MPI ops in GPU stream for faster comms (#1356)

This commit is contained in:
Awni Hannun
2024-08-26 15:12:50 -07:00
committed by GitHub
parent 2fdf9eb535
commit 5f7d19d1f5
14 changed files with 220 additions and 26 deletions

View File

@@ -132,6 +132,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp

View File

@@ -0,0 +1,84 @@
// Copyright © 2024 Apple Inc.
#include <cassert>
#include "mlx/allocator.h"
#include "mlx/backend/metal/device.h"
#include "mlx/distributed/ops.h"
#include "mlx/distributed/primitives.h"
#include "mlx/scheduler.h"
namespace mlx::core::distributed {
void signal_and_wait(const array& in, const array& out, const Stream s) {
auto& d = metal::device(s.device);
d.end_encoding(s.index);
auto command_buffer = d.get_command_buffer(s.index);
if (in.event().valid()) {
command_buffer->encodeSignalEvent(
static_cast<MTL::Event*>(in.event().raw_event().get()),
in.event().value());
}
command_buffer->encodeWait(
static_cast<MTL::Event*>(out.event().raw_event().get()),
out.event().value());
}
void AllReduce::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto& in = inputs[0];
auto& out = outputs[0];
if (in.is_donatable()) {
out.move_shared_buffer(in);
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
auto task = [in = in,
out = out,
reduce_type = reduce_type_,
group = group()]() mutable {
if (in.event().valid()) {
in.event().wait();
}
switch (reduce_type) {
case Sum:
distributed::detail::all_sum(
group, in.data_shared_ptr() == nullptr ? out : in, out);
break;
default:
throw std::runtime_error("Only all reduce sum is supported for now");
}
out.event().signal();
};
scheduler::enqueue(detail::communication_stream(), std::move(task));
signal_and_wait(in, out, stream());
}
void AllGather::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto& in = inputs[0];
auto& out = outputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto task = [in = in, out = out, group = group()]() mutable {
if (in.event().valid()) {
in.event().wait();
}
distributed::detail::all_gather(group, in, out);
out.event().signal();
};
scheduler::enqueue(detail::communication_stream(), std::move(task));
signal_and_wait(in, out, stream());
}
} // namespace mlx::core::distributed

View File

@@ -47,8 +47,6 @@ std::function<void()> make_task(array arr, bool signal) {
for (auto& input : arr.inputs()) {
if (input.event().valid() &&
input.event().stream() != arr.primitive().stream()) {
// TODO, consider committing the buffer and encoding a wait in the new
// buffer rather than on the task thread
input.event().wait();
}
}