MPI ops in GPU stream for faster comms (#1356)

This commit is contained in:
Awni Hannun 2024-08-26 15:12:50 -07:00 committed by GitHub
parent 2fdf9eb535
commit 5f7d19d1f5
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 220 additions and 26 deletions

View File

@ -0,0 +1,66 @@
# Copyright © 2024 Apple Inc.
"""
Run with:
mpirun -n 2 python /path/to/distributed_bench.py
"""
import time
import mlx.core as mx
def time_fn(fn, *args, **kwargs):
msg = kwargs.pop("msg", None)
world = mx.distributed.init()
if world.rank() == 0:
if msg:
print(f"Timing {msg} ...", end=" ")
else:
print(f"Timing {fn.__name__} ...", end=" ")
# warmup
for _ in range(5):
mx.eval(fn(*args, **kwargs))
num_iters = 100
tic = time.perf_counter()
for _ in range(num_iters):
x = mx.eval(fn(*args, **kwargs))
toc = time.perf_counter()
msec = 1e3 * (toc - tic) / num_iters
if world.rank() == 0:
print(f"{msec:.5f} msec")
def time_all_sum():
shape = (4096,)
x = mx.random.uniform(shape=shape)
mx.eval(x)
def sine(x):
for _ in range(20):
x = mx.sin(x)
return x
time_fn(sine, x)
def all_sum_plain(x):
for _ in range(20):
x = mx.distributed.all_sum(x)
return x
time_fn(all_sum_plain, x)
def all_sum_with_sine(x):
for _ in range(20):
x = mx.sin(x)
x = mx.distributed.all_sum(x)
return x
time_fn(all_sum_with_sine, x)
if __name__ == "__main__":
time_all_sum()

View File

@ -132,6 +132,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp ${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp ${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp ${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp ${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp ${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp ${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp

View File

@ -0,0 +1,84 @@
// Copyright © 2024 Apple Inc.
#include <cassert>
#include "mlx/allocator.h"
#include "mlx/backend/metal/device.h"
#include "mlx/distributed/ops.h"
#include "mlx/distributed/primitives.h"
#include "mlx/scheduler.h"
namespace mlx::core::distributed {
void signal_and_wait(const array& in, const array& out, const Stream s) {
auto& d = metal::device(s.device);
d.end_encoding(s.index);
auto command_buffer = d.get_command_buffer(s.index);
if (in.event().valid()) {
command_buffer->encodeSignalEvent(
static_cast<MTL::Event*>(in.event().raw_event().get()),
in.event().value());
}
command_buffer->encodeWait(
static_cast<MTL::Event*>(out.event().raw_event().get()),
out.event().value());
}
void AllReduce::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto& in = inputs[0];
auto& out = outputs[0];
if (in.is_donatable()) {
out.move_shared_buffer(in);
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
auto task = [in = in,
out = out,
reduce_type = reduce_type_,
group = group()]() mutable {
if (in.event().valid()) {
in.event().wait();
}
switch (reduce_type) {
case Sum:
distributed::detail::all_sum(
group, in.data_shared_ptr() == nullptr ? out : in, out);
break;
default:
throw std::runtime_error("Only all reduce sum is supported for now");
}
out.event().signal();
};
scheduler::enqueue(detail::communication_stream(), std::move(task));
signal_and_wait(in, out, stream());
}
void AllGather::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto& in = inputs[0];
auto& out = outputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto task = [in = in, out = out, group = group()]() mutable {
if (in.event().valid()) {
in.event().wait();
}
distributed::detail::all_gather(group, in, out);
out.event().signal();
};
scheduler::enqueue(detail::communication_stream(), std::move(task));
signal_and_wait(in, out, stream());
}
} // namespace mlx::core::distributed

View File

@ -47,8 +47,6 @@ std::function<void()> make_task(array arr, bool signal) {
for (auto& input : arr.inputs()) { for (auto& input : arr.inputs()) {
if (input.event().valid() && if (input.event().valid() &&
input.event().stream() != arr.primitive().stream()) { input.event().stream() != arr.primitive().stream()) {
// TODO, consider committing the buffer and encoding a wait in the new
// buffer rather than on the task thread
input.event().wait(); input.event().wait();
} }
} }

View File

@ -1,6 +1,7 @@
// Copyright © 2023-2024 Apple Inc. // Copyright © 2023-2024 Apple Inc.
#include "mlx/primitives.h" #include "mlx/primitives.h"
#include "mlx/distributed/primitives.h"
#include "mlx/fast_primitives.h" #include "mlx/fast_primitives.h"
#define NO_GPU_MULTI(func) \ #define NO_GPU_MULTI(func) \
@ -122,4 +123,9 @@ NO_GPU_MULTI(AffineQuantize)
NO_GPU_MULTI(CustomKernel) NO_GPU_MULTI(CustomKernel)
} // namespace fast } // namespace fast
namespace distributed {
NO_GPU_MULTI(AllReduce)
NO_GPU_MULTI(AllGather)
} // namespace distributed
} // namespace mlx::core } // namespace mlx::core

View File

@ -0,0 +1,18 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include "mlx/distributed/distributed.h"
namespace mlx::core::distributed::detail {
/* Return the communication stream. */
Stream communication_stream();
/* Perform an all reduce sum operation */
void all_sum(Group group, const array& input, array& output);
/* Perform an all reduce sum operation */
void all_gather(Group group, const array& input, array& output);
} // namespace mlx::core::distributed::detail

View File

@ -5,6 +5,7 @@
#include "mlx/backend/common/copy.h" #include "mlx/backend/common/copy.h"
#include "mlx/distributed/distributed.h" #include "mlx/distributed/distributed.h"
#include "mlx/distributed/distributed_impl.h"
#include "mlx/scheduler.h" #include "mlx/scheduler.h"
#define LOAD_SYMBOL(symbol, variable) \ #define LOAD_SYMBOL(symbol, variable) \

View File

@ -1,6 +1,7 @@
// Copyright © 2024 Apple Inc. // Copyright © 2024 Apple Inc.
#include "mlx/distributed/distributed.h" #include "mlx/distributed/distributed.h"
#include "mlx/distributed/distributed_impl.h"
namespace mlx::core::distributed { namespace mlx::core::distributed {

View File

@ -17,7 +17,10 @@ Group to_group(std::optional<Group> group) {
} // namespace } // namespace
array all_sum(const array& x, std::optional<Group> group_) { array all_sum(
const array& x,
std::optional<Group> group_ /* = std::nullopt */,
StreamOrDevice s /* = {} */) {
auto group = to_group(group_); auto group = to_group(group_);
if (group.size() == 1) { if (group.size() == 1) {
@ -27,11 +30,14 @@ array all_sum(const array& x, std::optional<Group> group_) {
return array( return array(
x.shape(), x.shape(),
x.dtype(), x.dtype(),
std::make_shared<AllReduce>(group, AllReduce::Sum), std::make_shared<AllReduce>(to_stream(s), group, AllReduce::Sum),
{x}); {x});
} }
array all_gather(const array& x, std::optional<Group> group_) { array all_gather(
const array& x,
std::optional<Group> group_ /* = std::nullopt */,
StreamOrDevice s /* = {} */) {
auto group = to_group(group_); auto group = to_group(group_);
if (group.size() == 1) { if (group.size() == 1) {
@ -47,7 +53,7 @@ array all_gather(const array& x, std::optional<Group> group_) {
return array( return array(
std::move(result_shape), std::move(result_shape),
x.dtype(), x.dtype(),
std::make_shared<AllGather>(group), std::make_shared<AllGather>(to_stream(s), group),
{x}); {x});
} }

View File

@ -5,10 +5,17 @@
#include <optional> #include <optional>
#include "mlx/distributed/distributed.h" #include "mlx/distributed/distributed.h"
#include "mlx/utils.h"
namespace mlx::core::distributed { namespace mlx::core::distributed {
array all_sum(const array& x, std::optional<Group> group = std::nullopt); array all_sum(
array all_gather(const array& x, std::optional<Group> group = std::nullopt); const array& x,
std::optional<Group> group = std::nullopt,
StreamOrDevice s = {});
array all_gather(
const array& x,
std::optional<Group> group = std::nullopt,
StreamOrDevice S = {});
} // namespace mlx::core::distributed } // namespace mlx::core::distributed

View File

@ -3,7 +3,6 @@
#include <cassert> #include <cassert>
#include "mlx/allocator.h" #include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/distributed/ops.h" #include "mlx/distributed/ops.h"
#include "mlx/distributed/primitives.h" #include "mlx/distributed/primitives.h"
#include "mlx/ops.h" #include "mlx/ops.h"

View File

@ -3,20 +3,15 @@
#pragma once #pragma once
#include "mlx/distributed/distributed.h" #include "mlx/distributed/distributed.h"
#include "mlx/distributed/distributed_impl.h"
#include "mlx/primitives.h" #include "mlx/primitives.h"
namespace mlx::core::distributed { namespace mlx::core::distributed {
class DistPrimitive : public Primitive { class DistPrimitive : public Primitive {
public: public:
DistPrimitive(Group group) DistPrimitive(Stream stream, Group group)
: Primitive(detail::communication_stream()), group_(group) {} : Primitive(stream), group_(group) {}
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override {
throw std::runtime_error(
"Communication primitives cannot be run on the GPU");
}
const Group& group() const { const Group& group() const {
return group_; return group_;
@ -30,11 +25,13 @@ class AllReduce : public DistPrimitive {
public: public:
enum ReduceType { And, Or, Sum, Prod, Min, Max }; enum ReduceType { And, Or, Sum, Prod, Min, Max };
AllReduce(Group group, ReduceType reduce_type) AllReduce(Stream stream, Group group, ReduceType reduce_type)
: DistPrimitive(group), reduce_type_(reduce_type) {} : DistPrimitive(stream, group), reduce_type_(reduce_type) {}
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs) void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override; override;
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override;
std::pair<std::vector<array>, std::vector<int>> vmap( std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs, const std::vector<array>& inputs,
const std::vector<int>& axes) override; const std::vector<int>& axes) override;
@ -77,10 +74,13 @@ class AllReduce : public DistPrimitive {
class AllGather : public DistPrimitive { class AllGather : public DistPrimitive {
public: public:
AllGather(Group group) : DistPrimitive(group) {} AllGather(Stream stream, Group group) : DistPrimitive(stream, group) {}
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs) void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override; override;
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override;
std::pair<std::vector<array>, std::vector<int>> vmap( std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs, const std::vector<array>& inputs,
const std::vector<int>& axes) override; const std::vector<int>& axes) override;

View File

@ -4,10 +4,10 @@
#include <variant> #include <variant>
#include "array.h" #include "mlx/array.h"
#include "device.h" #include "mlx/device.h"
#include "dtype.h" #include "mlx/dtype.h"
#include "stream.h" #include "mlx/stream.h"
namespace mlx::core { namespace mlx::core {

View File

@ -3,6 +3,7 @@
#include <nanobind/nanobind.h> #include <nanobind/nanobind.h>
#include <nanobind/stl/optional.h> #include <nanobind/stl/optional.h>
#include <nanobind/stl/shared_ptr.h> #include <nanobind/stl/shared_ptr.h>
#include <nanobind/stl/variant.h>
#include "mlx/distributed/distributed.h" #include "mlx/distributed/distributed.h"
#include "mlx/distributed/ops.h" #include "mlx/distributed/ops.h"
@ -74,8 +75,9 @@ void init_distributed(nb::module_& parent_module) {
"x"_a, "x"_a,
nb::kw_only(), nb::kw_only(),
"group"_a = nb::none(), "group"_a = nb::none(),
"stream"_a = nb::none(),
nb::sig( nb::sig(
"def all_sum(x: array, *, group: Optional[Group] = None) -> array"), "def all_sum(x: array, *, group: Optional[Group] = None, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc( R"pbdoc(
All reduce sum. All reduce sum.
@ -86,6 +88,8 @@ void init_distributed(nb::module_& parent_module) {
group (Group): The group of processes that will participate in the group (Group): The group of processes that will participate in the
reduction. If set to ``None`` the global group is used. Default: reduction. If set to ``None`` the global group is used. Default:
``None``. ``None``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns: Returns:
array: The sum of all ``x`` arrays. array: The sum of all ``x`` arrays.
@ -97,8 +101,9 @@ void init_distributed(nb::module_& parent_module) {
"x"_a, "x"_a,
nb::kw_only(), nb::kw_only(),
"group"_a = nb::none(), "group"_a = nb::none(),
"stream"_a = nb::none(),
nb::sig( nb::sig(
"def all_gather(x: array, *, group: Optional[Group] = None) -> array"), "def all_gather(x: array, *, group: Optional[Group] = None, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc( R"pbdoc(
Gather arrays from all processes. Gather arrays from all processes.
@ -110,6 +115,8 @@ void init_distributed(nb::module_& parent_module) {
group (Group): The group of processes that will participate in the group (Group): The group of processes that will participate in the
gather. If set to ``None`` the global group is used. Default: gather. If set to ``None`` the global group is used. Default:
``None``. ``None``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns: Returns:
array: The concatenation of all ``x`` arrays. array: The concatenation of all ``x`` arrays.