mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Added output_padding parameters in conv_transpose (#2092)
This commit is contained in:
@@ -25,6 +25,8 @@ class ConvTranspose1d(Module):
|
||||
padding (int, optional): How many positions to 0-pad the input with.
|
||||
Default: ``0``.
|
||||
dilation (int, optional): The dilation of the convolution.
|
||||
output_padding(int, optional): Additional size added to one side of the
|
||||
output shape. Default: ``0``.
|
||||
bias (bool, optional): If ``True`` add a learnable bias to the output.
|
||||
Default: ``True``
|
||||
"""
|
||||
@@ -37,6 +39,7 @@ class ConvTranspose1d(Module):
|
||||
stride: int = 1,
|
||||
padding: int = 0,
|
||||
dilation: int = 1,
|
||||
output_padding: int = 0,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
@@ -53,18 +56,25 @@ class ConvTranspose1d(Module):
|
||||
self.padding = padding
|
||||
self.dilation = dilation
|
||||
self.stride = stride
|
||||
self.output_padding = output_padding
|
||||
|
||||
def _extra_repr(self):
|
||||
return (
|
||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||
f"kernel_size={self.weight.shape[1]}, stride={self.stride}, "
|
||||
f"padding={self.padding}, dilation={self.dilation}, "
|
||||
f"output_padding={self.output_padding}, "
|
||||
f"bias={'bias' in self}"
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
y = mx.conv_transpose1d(
|
||||
x, self.weight, self.stride, self.padding, self.dilation
|
||||
x,
|
||||
self.weight,
|
||||
self.stride,
|
||||
self.padding,
|
||||
self.dilation,
|
||||
self.output_padding,
|
||||
)
|
||||
if "bias" in self:
|
||||
y = y + self.bias
|
||||
@@ -90,6 +100,8 @@ class ConvTranspose2d(Module):
|
||||
padding (int or tuple, optional): How many positions to 0-pad
|
||||
the input with. Default: ``0``.
|
||||
dilation (int or tuple, optional): The dilation of the convolution.
|
||||
output_padding(int or tuple, optional): Additional size added to one
|
||||
side of the output shape. Default: ``0``.
|
||||
bias (bool, optional): If ``True`` add a learnable bias to the
|
||||
output. Default: ``True``
|
||||
"""
|
||||
@@ -102,13 +114,14 @@ class ConvTranspose2d(Module):
|
||||
stride: Union[int, tuple] = 1,
|
||||
padding: Union[int, tuple] = 0,
|
||||
dilation: Union[int, tuple] = 1,
|
||||
output_padding: Union[int, tuple] = 0,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
kernel_size, stride, padding = map(
|
||||
kernel_size, stride, padding, output_padding = map(
|
||||
lambda x: (x, x) if isinstance(x, int) else x,
|
||||
(kernel_size, stride, padding),
|
||||
(kernel_size, stride, padding, output_padding),
|
||||
)
|
||||
scale = math.sqrt(1 / (in_channels * kernel_size[0] * kernel_size[1]))
|
||||
self.weight = mx.random.uniform(
|
||||
@@ -122,18 +135,25 @@ class ConvTranspose2d(Module):
|
||||
self.padding = padding
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.output_padding = output_padding
|
||||
|
||||
def _extra_repr(self):
|
||||
return (
|
||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
|
||||
f"padding={self.padding}, dilation={self.dilation}, "
|
||||
f"output_padding={self.output_padding}, "
|
||||
f"bias={'bias' in self}"
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
y = mx.conv_transpose2d(
|
||||
x, self.weight, self.stride, self.padding, self.dilation
|
||||
x,
|
||||
self.weight,
|
||||
self.stride,
|
||||
self.padding,
|
||||
self.dilation,
|
||||
self.output_padding,
|
||||
)
|
||||
if "bias" in self:
|
||||
y = y + self.bias
|
||||
@@ -160,6 +180,8 @@ class ConvTranspose3d(Module):
|
||||
padding (int or tuple, optional): How many positions to 0-pad
|
||||
the input with. Default: ``0``.
|
||||
dilation (int or tuple, optional): The dilation of the convolution.
|
||||
output_padding(int or tuple, optional): Additional size added to one
|
||||
side of the output shape. Default: ``0``.
|
||||
bias (bool, optional): If ``True`` add a learnable bias to the
|
||||
output. Default: ``True``
|
||||
"""
|
||||
@@ -172,13 +194,14 @@ class ConvTranspose3d(Module):
|
||||
stride: Union[int, tuple] = 1,
|
||||
padding: Union[int, tuple] = 0,
|
||||
dilation: Union[int, tuple] = 1,
|
||||
output_padding: Union[int, tuple] = 0,
|
||||
bias: bool = True,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
kernel_size, stride, padding = map(
|
||||
kernel_size, stride, padding, output_padding = map(
|
||||
lambda x: (x, x, x) if isinstance(x, int) else x,
|
||||
(kernel_size, stride, padding),
|
||||
(kernel_size, stride, padding, output_padding),
|
||||
)
|
||||
scale = math.sqrt(
|
||||
1 / (in_channels * kernel_size[0] * kernel_size[1] * kernel_size[2])
|
||||
@@ -194,18 +217,25 @@ class ConvTranspose3d(Module):
|
||||
self.padding = padding
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.output_padding = output_padding
|
||||
|
||||
def _extra_repr(self):
|
||||
return (
|
||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||
f"kernel_size={self.weight.shape[1:3]}, stride={self.stride}, "
|
||||
f"padding={self.padding}, dilation={self.dilation}, "
|
||||
f"output_padding={self.output_padding}, "
|
||||
f"bias={'bias' in self}"
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
y = mx.conv_transpose3d(
|
||||
x, self.weight, self.stride, self.padding, self.dilation
|
||||
x,
|
||||
self.weight,
|
||||
self.stride,
|
||||
self.padding,
|
||||
self.dilation,
|
||||
self.output_padding,
|
||||
)
|
||||
if "bias" in self:
|
||||
y = y + self.bias
|
||||
|
||||
Reference in New Issue
Block a user