Added output_padding parameters in conv_transpose (#2092)

This commit is contained in:
Param Thakkar
2025-04-23 21:56:33 +05:30
committed by GitHub
parent 3836445241
commit 600e87e03c
6 changed files with 366 additions and 14 deletions

View File

@@ -596,6 +596,215 @@ class TestConvTranspose(mlx_tests.MLXTestCase):
N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
)
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_tranpose_1d_output_padding(self):
def run_conv_transpose_1d_output_padding(
N, C, O, iH, kH, stride, padding, output_padding, dtype="float32", atol=1e-5
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
iH=iH,
kH=kH,
stride=stride,
padding=padding,
output_padding=output_padding,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_pt = torch.from_numpy(in_np.transpose(0, 2, 1))
wt_pt = torch.from_numpy(wt_np.transpose(2, 0, 1))
out_mx = mx.conv_transpose1d(
in_mx,
wt_mx,
stride=stride,
padding=padding,
output_padding=output_padding,
)
out_pt = torch.conv_transpose1d(
in_pt,
wt_pt,
stride=stride,
padding=padding,
output_padding=output_padding,
)
out_pt = torch.transpose(out_pt, 2, 1)
self.assertEqual(out_pt.shape, out_mx.shape)
self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=atol))
for dtype in ("float32",):
for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
for iH, kH, stride, padding, output_padding in (
(3, 2, 2, 0, 1),
(5, 3, 2, 1, 0),
(7, 4, 3, 1, 2),
):
run_conv_transpose_1d_output_padding(
N, C, O, iH, kH, stride, padding, output_padding, dtype=dtype
)
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_transpose_2d_output_padding(self):
def run_conv_transpose_2d_output_padding(
N,
C,
O,
idim,
kdim,
stride,
padding,
output_padding,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
idim=idim,
kdim=kdim,
stride=stride,
padding=padding,
output_padding=output_padding,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
iH, iW = idim
kH, kW = kdim
in_np = np.random.normal(0, 1.0 / C, (N, iH, iW, C)).astype(np_dtype)
wt_np = np.random.normal(0, 1.0 / C, (O, kH, kW, C)).astype(np_dtype)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_pt = torch.from_numpy(in_np.transpose(0, 3, 1, 2))
wt_pt = torch.from_numpy(wt_np.transpose(3, 0, 1, 2))
out_mx = mx.conv_transpose2d(
in_mx,
wt_mx,
stride=stride,
padding=padding,
output_padding=output_padding,
)
out_pt = torch.conv_transpose2d(
in_pt,
wt_pt,
stride=stride,
padding=padding,
output_padding=output_padding,
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1)).numpy(force=True)
self.assertEqual(out_pt.shape, out_mx.shape)
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
for dtype in ("float32",):
for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
for idim, kdim, stride, padding, output_padding in (
((3, 3), (2, 2), (2, 2), (0, 0), (1, 1)),
((5, 5), (3, 3), (2, 2), (1, 1), (0, 0)),
((7, 7), (4, 4), (3, 3), (1, 1), (2, 2)),
):
run_conv_transpose_2d_output_padding(
N,
C,
O,
idim,
kdim,
stride,
padding,
output_padding,
dtype=dtype,
)
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_transpose_3d_output_padding(self):
def run_conv_transpose_3d_output_padding(
N,
C,
O,
idim,
kdim,
stride,
padding,
output_padding,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
idim=idim,
kdim=kdim,
stride=stride,
padding=padding,
output_padding=output_padding,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
iD, iH, iW = idim
kD, kH, kW = kdim
in_np = np.random.normal(0, 1.0 / C, (N, iD, iH, iW, C)).astype(
np_dtype
)
wt_np = np.random.normal(0, 1.0 / C, (O, kD, kH, kW, C)).astype(
np_dtype
)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_pt = torch.from_numpy(in_np.transpose(0, 4, 1, 2, 3))
wt_pt = torch.from_numpy(wt_np.transpose(4, 0, 1, 2, 3))
out_mx = mx.conv_transpose3d(
in_mx,
wt_mx,
stride=stride,
padding=padding,
output_padding=output_padding,
)
out_pt = torch.conv_transpose3d(
in_pt,
wt_pt,
stride=stride,
padding=padding,
output_padding=output_padding,
)
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1)).numpy(force=True)
self.assertEqual(out_pt.shape, out_mx.shape)
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
for dtype in ("float32",):
for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
for idim, kdim, stride, padding, output_padding in (
((3, 3, 3), (2, 2, 2), (2, 2, 2), (0, 0, 0), (1, 1, 1)),
((5, 5, 5), (3, 3, 3), (2, 2, 2), (1, 1, 1), (0, 0, 0)),
((7, 7, 7), (4, 4, 4), (3, 3, 3), (1, 1, 1), (2, 2, 2)),
):
run_conv_transpose_3d_output_padding(
N,
C,
O,
idim,
kdim,
stride,
padding,
output_padding,
dtype=dtype,
)
if __name__ == "__main__":
unittest.main()