mirror of
https://github.com/ml-explore/mlx.git
synced 2025-10-19 08:10:15 +08:00
Added output_padding parameters in conv_transpose (#2092)
This commit is contained in:
@@ -596,6 +596,215 @@ class TestConvTranspose(mlx_tests.MLXTestCase):
|
||||
N, C, O, idim, kdim, stride, padding, dilation, dtype=dtype
|
||||
)
|
||||
|
||||
@unittest.skipIf(not has_torch, "requires Torch")
|
||||
def test_torch_conv_tranpose_1d_output_padding(self):
|
||||
def run_conv_transpose_1d_output_padding(
|
||||
N, C, O, iH, kH, stride, padding, output_padding, dtype="float32", atol=1e-5
|
||||
):
|
||||
with self.subTest(
|
||||
dtype=dtype,
|
||||
N=N,
|
||||
C=C,
|
||||
O=O,
|
||||
iH=iH,
|
||||
kH=kH,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
):
|
||||
np_dtype = getattr(np, dtype)
|
||||
np.random.seed(0)
|
||||
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
|
||||
wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
|
||||
|
||||
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
||||
in_pt = torch.from_numpy(in_np.transpose(0, 2, 1))
|
||||
wt_pt = torch.from_numpy(wt_np.transpose(2, 0, 1))
|
||||
|
||||
out_mx = mx.conv_transpose1d(
|
||||
in_mx,
|
||||
wt_mx,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
)
|
||||
|
||||
out_pt = torch.conv_transpose1d(
|
||||
in_pt,
|
||||
wt_pt,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
)
|
||||
out_pt = torch.transpose(out_pt, 2, 1)
|
||||
|
||||
self.assertEqual(out_pt.shape, out_mx.shape)
|
||||
self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=atol))
|
||||
|
||||
for dtype in ("float32",):
|
||||
for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
|
||||
for iH, kH, stride, padding, output_padding in (
|
||||
(3, 2, 2, 0, 1),
|
||||
(5, 3, 2, 1, 0),
|
||||
(7, 4, 3, 1, 2),
|
||||
):
|
||||
run_conv_transpose_1d_output_padding(
|
||||
N, C, O, iH, kH, stride, padding, output_padding, dtype=dtype
|
||||
)
|
||||
|
||||
@unittest.skipIf(not has_torch, "requires Torch")
|
||||
def test_torch_conv_transpose_2d_output_padding(self):
|
||||
def run_conv_transpose_2d_output_padding(
|
||||
N,
|
||||
C,
|
||||
O,
|
||||
idim,
|
||||
kdim,
|
||||
stride,
|
||||
padding,
|
||||
output_padding,
|
||||
dtype="float32",
|
||||
atol=1e-5,
|
||||
):
|
||||
with self.subTest(
|
||||
dtype=dtype,
|
||||
N=N,
|
||||
C=C,
|
||||
O=O,
|
||||
idim=idim,
|
||||
kdim=kdim,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
):
|
||||
np_dtype = getattr(np, dtype)
|
||||
np.random.seed(0)
|
||||
iH, iW = idim
|
||||
kH, kW = kdim
|
||||
in_np = np.random.normal(0, 1.0 / C, (N, iH, iW, C)).astype(np_dtype)
|
||||
wt_np = np.random.normal(0, 1.0 / C, (O, kH, kW, C)).astype(np_dtype)
|
||||
|
||||
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
||||
in_pt = torch.from_numpy(in_np.transpose(0, 3, 1, 2))
|
||||
wt_pt = torch.from_numpy(wt_np.transpose(3, 0, 1, 2))
|
||||
|
||||
out_mx = mx.conv_transpose2d(
|
||||
in_mx,
|
||||
wt_mx,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
)
|
||||
|
||||
out_pt = torch.conv_transpose2d(
|
||||
in_pt,
|
||||
wt_pt,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 1)).numpy(force=True)
|
||||
|
||||
self.assertEqual(out_pt.shape, out_mx.shape)
|
||||
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
|
||||
|
||||
for dtype in ("float32",):
|
||||
for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
|
||||
for idim, kdim, stride, padding, output_padding in (
|
||||
((3, 3), (2, 2), (2, 2), (0, 0), (1, 1)),
|
||||
((5, 5), (3, 3), (2, 2), (1, 1), (0, 0)),
|
||||
((7, 7), (4, 4), (3, 3), (1, 1), (2, 2)),
|
||||
):
|
||||
run_conv_transpose_2d_output_padding(
|
||||
N,
|
||||
C,
|
||||
O,
|
||||
idim,
|
||||
kdim,
|
||||
stride,
|
||||
padding,
|
||||
output_padding,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
@unittest.skipIf(not has_torch, "requires Torch")
|
||||
def test_torch_conv_transpose_3d_output_padding(self):
|
||||
def run_conv_transpose_3d_output_padding(
|
||||
N,
|
||||
C,
|
||||
O,
|
||||
idim,
|
||||
kdim,
|
||||
stride,
|
||||
padding,
|
||||
output_padding,
|
||||
dtype="float32",
|
||||
atol=1e-5,
|
||||
):
|
||||
with self.subTest(
|
||||
dtype=dtype,
|
||||
N=N,
|
||||
C=C,
|
||||
O=O,
|
||||
idim=idim,
|
||||
kdim=kdim,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
):
|
||||
np_dtype = getattr(np, dtype)
|
||||
np.random.seed(0)
|
||||
iD, iH, iW = idim
|
||||
kD, kH, kW = kdim
|
||||
in_np = np.random.normal(0, 1.0 / C, (N, iD, iH, iW, C)).astype(
|
||||
np_dtype
|
||||
)
|
||||
wt_np = np.random.normal(0, 1.0 / C, (O, kD, kH, kW, C)).astype(
|
||||
np_dtype
|
||||
)
|
||||
|
||||
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
|
||||
in_pt = torch.from_numpy(in_np.transpose(0, 4, 1, 2, 3))
|
||||
wt_pt = torch.from_numpy(wt_np.transpose(4, 0, 1, 2, 3))
|
||||
|
||||
out_mx = mx.conv_transpose3d(
|
||||
in_mx,
|
||||
wt_mx,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
)
|
||||
out_pt = torch.conv_transpose3d(
|
||||
in_pt,
|
||||
wt_pt,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1)).numpy(force=True)
|
||||
|
||||
self.assertEqual(out_pt.shape, out_mx.shape)
|
||||
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
|
||||
|
||||
for dtype in ("float32",):
|
||||
for N, C, O in ((1, 1, 1), (1, 6, 1), (4, 32, 64)):
|
||||
for idim, kdim, stride, padding, output_padding in (
|
||||
((3, 3, 3), (2, 2, 2), (2, 2, 2), (0, 0, 0), (1, 1, 1)),
|
||||
((5, 5, 5), (3, 3, 3), (2, 2, 2), (1, 1, 1), (0, 0, 0)),
|
||||
((7, 7, 7), (4, 4, 4), (3, 3, 3), (1, 1, 1), (2, 2, 2)),
|
||||
):
|
||||
run_conv_transpose_3d_output_padding(
|
||||
N,
|
||||
C,
|
||||
O,
|
||||
idim,
|
||||
kdim,
|
||||
stride,
|
||||
padding,
|
||||
output_padding,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Reference in New Issue
Block a user