metal kernels

This commit is contained in:
Awni Hannun
2025-10-24 08:47:24 -07:00
parent 6959732915
commit 6286e528e4
13 changed files with 319 additions and 100 deletions

View File

@@ -120,7 +120,7 @@ Simd<uint32_t, N> fp32_to_bits(Simd<float, N> x) {
struct ToFP8 {
template <typename T, int N>
Simd<uint8_t, N> operator()(Simd<T, N> f) {
uint32_t fp8_max = 1087 << 20;
uint32_t fp8_max = 543 << 21;
auto denorm_mask = Simd<uint32_t, N>(141 << 23);
Simd<uint32_t, N> f_bits;
Simd<float, N> f32 = f;

View File

@@ -1,7 +1,22 @@
#pragma once
struct __nv_fp8_e8m0 {
__device__ __nv_fp8_e8m0(uint8_t x) : __x(x) {}
__device__ __nv_fp8_e8m0(float x) {
if (!std::isfinite(x)) {
__x = 0xFF;
return;
}
if (x < 0.0f) {
__x = 0x00;
return;
}
float le = std::log2f(x);
int n = static_cast<int>(std::nearbyintf(le));
n = n < -127 ? -127 : n;
n = n > 127 ? 127 : n;
__x = static_cast<uint8_t>(n + 127);
}
__device__ operator float() {
if (__x == 0xFF) {

View File

@@ -49,13 +49,12 @@ fp_quantize(const T* w, uint8_t* out, uint8_t* scales, size_t size) {
auto grid_dim_x =
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
size_t out_index = tidx + grid_dim_x * size_t(tidy);
size_t in_index = out_index;
if (in_index >= size) {
size_t index = tidx + grid_dim_x * size_t(tidy);
if (index >= size) {
return;
}
float w_thread = w[in_index];
float w_thread = w[index];
cg::greater<float> max_op;
auto warp = cg::tiled_partition<group_size>(cg::this_thread_block());
@@ -70,21 +69,19 @@ fp_quantize(const T* w, uint8_t* out, uint8_t* scales, size_t size) {
scale = float(s);
// Write out the scales
size_t gindex = in_index / group_size;
if (in_index % group_size == 0) {
size_t gindex = index / group_size;
if (index % group_size == 0) {
scales[gindex] = q_scale;
}
uint8_t output = 0;
uint8_t val = Quantize<bits>{}(scale == 0 ? 0.0f : w_thread / scale);
output = val;
uint8_t output = Quantize<bits>{}(scale == 0 ? 0.0f : w_thread / scale);
if (bits == 4) {
uint8_t sval = warp.shfl_down(val, 1);
uint8_t sval = warp.shfl_down(output, 1);
output |= sval << bits;
}
constexpr int pack_factor = bits == 8 ? 1 : 2;
if (out_index % pack_factor == 0) {
out[out_index / pack_factor] = output;
if (index % pack_factor == 0) {
out[index / pack_factor] = output;
}
}

View File

@@ -29,7 +29,7 @@ make_jit_source(
kernels/bf16_math.h
kernels/complex.h
kernels/defines.h)
make_jit_source(unary_ops kernels/erf.h kernels/expm1f.h)
make_jit_source(unary_ops kernels/erf.h kernels/expm1f.h kernels/fp8.h)
make_jit_source(binary_ops)
make_jit_source(ternary_ops)
make_jit_source(reduce_utils kernels/atomic.h kernels/reduction/ops.h)

View File

@@ -6,6 +6,7 @@ set(BASE_HEADERS
defines.h
erf.h
expm1f.h
fp8.h
utils.h)
function(build_kernel_base TARGET SRCFILE DEPS)
@@ -109,7 +110,7 @@ if(NOT MLX_METAL_JIT)
reduction/reduce_col.h
reduction/reduce_row.h)
build_kernel(quantized quantized.h quantized_utils.h ${STEEL_HEADERS})
build_kernel(fp4_quantized fp4_quantized.h quantized_utils.h ${STEEL_HEADERS})
build_kernel(fp_quantized fp_quantized.h quantized_utils.h ${STEEL_HEADERS})
build_kernel(scan scan.h)
build_kernel(softmax softmax.h)
build_kernel(logsumexp logsumexp.h)

View File

@@ -0,0 +1,56 @@
#pragma once
constexpr constant static float FP4_LUT[16] = {
+0.0f,
+0.5f,
+1.0f,
+1.5f,
+2.0f,
+3.0f,
+4.0f,
+6.0f,
-0.0f,
-0.5f,
-1.0f,
-1.5f,
-2.0f,
-3.0f,
-4.0f,
-6.0f};
struct fp4_e2m1 {
fp4_e2m1(float x) {
if (metal::isnan(x)) {
bits = 0x7;
return;
}
const uint8_t sign_bit = (metal::signbit(x)) ? 0x8 : 0x0;
x = metal::abs(x);
if (x > 5.0f) {
bits = 0x7;
} else if (x >= 3.5f) {
bits = 0x6;
} else if (x > 2.5f) {
bits = 0x5;
} else if (x >= 1.75f) {
bits = 0x4;
} else if (x > 1.25f) {
bits = 0x3;
} else if (x >= 0.75f) {
bits = 0x2;
} else if (x > 0.25f) {
bits = 0x1;
} else {
bits = 0x0;
}
bits |= sign_bit;
}
operator float() {
return FP4_LUT[bits];
}
uint8_t bits;
};

View File

@@ -0,0 +1,88 @@
#pragma once
inline float fp32_from_bits(uint32_t bits) {
return *(reinterpret_cast<thread float*>(&bits));
}
inline float fp32_to_bits(float x) {
return *(reinterpret_cast<thread uint32_t*>(&x));
}
struct fp8_e4m3 {
template <typename T>
fp8_e4m3(T f) {
// From PyTorch
// https://github.com/pytorch/pytorch/blob/e3643e1e0e923f0fc063dfab6f45c956d568919d/c10/util/Float8_e4m3fn.h#L148
uint32_t fp8_max = 543 << 21;
uint32_t denorm_mask = 141 << 23;
uint32_t f_bits = fp32_to_bits(static_cast<float>(f));
uint32_t sign = f_bits & 0x80000000;
f_bits ^= sign;
if (f_bits >= fp8_max) {
// Default behavior saturates to min/max
bits = 0x7E;
} else {
if (f_bits < (121 << 23)) {
f_bits =
fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask));
bits = static_cast<uint8_t>(f_bits - denorm_mask);
} else {
// resulting mantissa is odd
uint8_t mant_odd = (f_bits >> 20) & 1;
f_bits += ((uint32_t)(7 - 127) << 23) + 0x7FFFF;
f_bits += mant_odd;
bits = static_cast<uint8_t>(f_bits >> 20);
}
}
bits |= static_cast<uint8_t>(sign >> 24);
}
operator float() {
// From PyTorch:
// https://github.com/pytorch/pytorch/blob/e3643e1e0e923f0fc063dfab6f45c956d568919d/c10/util/Float8_e4m3fn.h#L46
uint32_t w = static_cast<uint32_t>(bits) << 24;
uint32_t sign = w & 0x80000000;
uint32_t nonsign = w & 0x7FFFFFFF;
uint32_t renorm_shift = metal::clz(nonsign);
renorm_shift = renorm_shift > 4 ? renorm_shift - 4 : 0;
int32_t inf_nan_mask =
(static_cast<int32_t>(nonsign + 0x01000000) >> 8) & 0x7F800000;
int32_t zero_mask = static_cast<int32_t>(nonsign - 1) >> 31;
uint32_t result = sign |
((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
inf_nan_mask) &
~zero_mask);
return fp32_from_bits(result);
}
uint8_t bits;
};
struct fp8_e8m0 {
fp8_e8m0(float x) {
if (!metal::isfinite(x)) {
bits = 0xFF;
return;
}
if (x < 0.0f) {
bits = 0x00;
return;
}
float le = metal::log2(x);
int n = int(metal::round(le));
n = n < -127 ? -127 : n;
n = n > 127 ? 127 : n;
bits = static_cast<uint8_t>(n + 127);
}
operator float() {
if (bits == 0xFF) {
return metal::numeric_limits<float>::quiet_NaN();
}
return metal::ldexp(1.0f, static_cast<int>(bits) - 127);
}
uint8_t bits;
};

View File

@@ -59,28 +59,10 @@ inline void load_vector_safe(const device T* x, thread U* x_thread, int N) {
}
}
constexpr constant static float MXFP4_LUT[16] = {
+0.0f,
+0.5f,
+1.0f,
+1.5f,
+2.0f,
+3.0f,
+4.0f,
+6.0f,
-0.0f,
-0.5f,
-1.0f,
-1.5f,
-2.0f,
-3.0f,
-4.0f,
-6.0f};
template <typename T>
void load_mxfp4_lut(threadgroup T* lut, uint simd_gid, uint simd_lid) {
if (simd_gid == 0 && simd_lid < 16) {
lut[simd_lid] = static_cast<T>(MXFP4_LUT[simd_lid]);
lut[simd_lid] = static_cast<T>(FP4_LUT[simd_lid]);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
@@ -1789,3 +1771,100 @@ template <
}
}
}
template <int bits>
struct Quantize {
uint8_t operator()(float x) {
if constexpr (bits == 8) {
return fp8_e4m3(x).bits;
} else {
return fp4_e2m1(x).bits;
}
}
};
template <int bits>
struct Dequantize {
float operator()(uint8_t x) {
if constexpr (bits == 8) {
return float(*(thread fp8_e4m3*)(&x));
} else {
return float(*(thread fp4_e2m1*)(&x));
}
}
};
template <typename T, const int group_size, const int bits>
[[kernel]] void fp_quantize(
const device T* w [[buffer(0)]],
device uint8_t* out [[buffer(1)]],
device uint8_t* scales [[buffer(2)]],
uint2 tidx [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
constexpr bool use_mx_scale = group_size == 32;
size_t index = tidx.x + grid_dim.x * size_t(tidx.y);
float scale;
float w_thread = w[index];
if (use_mx_scale) {
scale = simd_max(abs(w_thread));
} else {
float w_max_l = simd_max(tidx.x < 16 ? abs(w_thread) : 0.0);
float w_max_r = simd_max(tidx.x >= 16 ? abs(w_thread) : 0.0);
scale = tidx.x < 16 ? w_max_l : w_max_r;
}
scale /= bits == 4 ? 6.0f : 448.0f;
using ScaleType = metal::conditional_t<use_mx_scale, fp8_e8m0, fp8_e4m3>;
auto s = ScaleType(scale);
uint8_t q_scale = s.bits;
scale = float(s);
// Write out the scales and biases
size_t gindex = index / group_size;
if (index % group_size == 0) {
scales[gindex] = q_scale;
}
uint8_t output = Quantize<bits>{}(scale == 0 ? 0.0f : w_thread / scale);
if (bits == 4) {
uint8_t sval = simd_shuffle_down(output, 1);
output |= sval << bits;
}
constexpr int pack_factor = bits == 8 ? 1 : 2;
if (index % pack_factor == 0) {
out[index / pack_factor] = output;
}
}
template <typename T, const int group_size, const int bits>
[[kernel]] void fp_dequantize(
const device uint8_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
device T* out [[buffer(3)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
constexpr bool use_mx_scale = group_size == 32;
constexpr int pack_factor = bits == 8 ? 1 : 2;
size_t offset = index.x + grid_dim.x * size_t(index.y);
size_t oindex = offset * pack_factor;
size_t gindex = oindex / group_size;
out += oindex;
using ScaleType = metal::conditional_t<use_mx_scale, fp8_e8m0, fp8_e4m3>;
auto q_scale = ((device ScaleType*)(scales))[gindex];
auto scale = float(q_scale);
uint val = w[offset];
#pragma clang loop unroll(full)
for (int i = 0; i < pack_factor; i++) {
uint8_t d;
if (bits == 4) {
d = (val >> (bits * i)) & 0x0f;
} else if (bits == 8) {
d = val;
}
out[i] = static_cast<T>(scale * Dequantize<bits>{}(d));
}
}

View File

@@ -4,7 +4,9 @@
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/steel/gemm/gemm.h"
#include "mlx/backend/metal/kernels/quantized_utils.h"
#include "mlx/backend/metal/kernels/fp4_quantized.h"
#include "mlx/backend/metal/kernels/fp8.h"
#include "mlx/backend/metal/kernels/fp4.h"
#include "mlx/backend/metal/kernels/fp_quantized.h"
#define instantiate_quantized(name, type) \
instantiate_kernel( \
@@ -113,13 +115,33 @@
instantiate_gather_qmm_rhs(mxfp4_gather_qmm_rhs, mxfp4_gather_qmm_rhs_nt, type, 16, 32, 32, 1, 2, true) \
instantiate_gather_qmm_rhs(mxfp4_gather_qmm_rhs, mxfp4_gather_qmm_rhs_nn, type, 16, 32, 32, 1, 2, false)
#define instantiate_quantize_dequantize(type, mode, group_size, bits) \
instantiate_kernel( \
mode "_quantize_" #type "_gs_" #group_size "_b_" #bits, \
fp_quantize, \
type, \
group_size, \
bits) \
instantiate_kernel( \
mode "_dequantize_" #type "_gs_" #group_size "_b_" #bits, \
fp_dequantize, \
type, \
group_size, \
bits)
#define instantiate_quantize_dequantize_modes(type) \
instantiate_quantize_dequantize(type, "mxfp4", 32, 4) \
instantiate_quantize_dequantize(type, "nvfp4", 16, 4) \
instantiate_quantize_dequantize(type, "mxfp8", 32, 8)
#define instantiate_quantized_types(type) \
instantiate_quantized_all_batched(type) \
instantiate_quantized_all_quad(type) \
instantiate_quantized_all_splitk(type) \
instantiate_quantized_all_single(type) \
instantiate_quantized_all_aligned(type) \
instantiate_quantized_all_rhs(type)
instantiate_quantized_all_rhs(type) \
instantiate_quantize_dequantize_modes(type)
instantiate_quantized_types(float)
instantiate_quantized_types(bfloat16_t)

View File

@@ -8,6 +8,7 @@
#include "mlx/backend/metal/kernels/cexpf.h"
#include "mlx/backend/metal/kernels/erf.h"
#include "mlx/backend/metal/kernels/expm1f.h"
#include "mlx/backend/metal/kernels/fp8.h"
namespace {
constant float inf = metal::numeric_limits<float>::infinity();
@@ -439,63 +440,15 @@ complex64_t ArcTan::operator()(complex64_t x) {
return (1.0 / complex64_t{0.0, 2.0}) * Log{}((1.0 + ix) / (1.0 - ix));
};
inline float fp32_from_bits(uint32_t bits) {
return *(reinterpret_cast<thread float*>(&bits));
}
inline float fp32_to_bits(float x) {
return *(reinterpret_cast<thread uint32_t*>(&x));
}
struct ToFP8 {
template <typename T>
uint8_t operator()(T f) {
// From PyTorch
// https://github.com/pytorch/pytorch/blob/e3643e1e0e923f0fc063dfab6f45c956d568919d/c10/util/Float8_e4m3fn.h#L148
uint32_t fp8_max = 1087 << 20;
uint32_t denorm_mask = 141 << 23;
uint32_t f_bits = fp32_to_bits(static_cast<float>(f));
uint8_t result = 0u;
uint32_t sign = f_bits & 0x80000000;
f_bits ^= sign;
if (f_bits >= fp8_max) {
// Default behavior saturates to min/max
result = 0x7E;
} else {
if (f_bits < (121 << 23)) {
f_bits =
fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask));
result = static_cast<uint8_t>(f_bits - denorm_mask);
} else {
// resulting mantissa is odd
uint8_t mant_odd = (f_bits >> 20) & 1;
f_bits += ((uint32_t)(7 - 127) << 23) + 0x7FFFF;
f_bits += mant_odd;
result = static_cast<uint8_t>(f_bits >> 20);
}
}
result |= static_cast<uint8_t>(sign >> 24);
return result;
return fp8_e4m3(f).bits;
}
};
struct FromFP8 {
float operator()(uint8_t x) {
// From PyTorch:
// https://github.com/pytorch/pytorch/blob/e3643e1e0e923f0fc063dfab6f45c956d568919d/c10/util/Float8_e4m3fn.h#L46
uint32_t w = static_cast<uint32_t>(x) << 24;
uint32_t sign = w & 0x80000000;
uint32_t nonsign = w & 0x7FFFFFFF;
uint32_t renorm_shift = metal::clz(nonsign);
renorm_shift = renorm_shift > 4 ? renorm_shift - 4 : 0;
int32_t inf_nan_mask =
(static_cast<int32_t>(nonsign + 0x01000000) >> 8) & 0x7F800000;
int32_t zero_mask = static_cast<int32_t>(nonsign - 1) >> 31;
uint32_t result = sign |
((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
inf_nan_mask) &
~zero_mask);
return fp32_from_bits(result);
return float(*(thread fp8_e4m3*)(&x));
}
};

View File

@@ -1045,26 +1045,31 @@ void fast::Quantize::eval_gpu(
compute_encoder.set_input_array(w, 0);
if (dequantize_) {
auto scales = ensure_row_contiguous(inputs[1], d, s);
auto biases = ensure_row_contiguous(inputs[2], d, s);
compute_encoder.set_input_array(scales, 1);
compute_encoder.set_input_array(biases, 2);
compute_encoder.set_output_array(out, 3);
if (mode_ == QuantizationMode::Affine) {
auto biases = ensure_row_contiguous(inputs[2], d, s);
compute_encoder.set_input_array(biases, 2);
}
} else {
auto& scales = outputs[1];
auto& biases = outputs[2];
scales.set_data(allocator::malloc(scales.nbytes()));
biases.set_data(allocator::malloc(biases.nbytes()));
compute_encoder.set_output_array(out, 1);
compute_encoder.set_output_array(scales, 2);
compute_encoder.set_output_array(biases, 3);
if (mode_ == QuantizationMode::Affine) {
auto& biases = outputs[2];
biases.set_data(allocator::malloc(biases.nbytes()));
compute_encoder.set_output_array(biases, 3);
}
}
auto type_string = dequantize_ ? get_type_string(out.dtype())
: get_type_string(w_pre.dtype());
auto mode = quantization_mode_to_string(mode_);
std::string kname;
concatenate(
kname,
dequantize_ ? "affine_dequantize" : "affine_quantize",
mode + (dequantize_ ? "_dequantize" : "_quantize"),
"_",
type_string,
"_gs_",
@@ -1075,7 +1080,7 @@ void fast::Quantize::eval_gpu(
d,
kname,
dequantize_ ? "dequantize" : "quantize",
"affine",
mode,
type_string,
group_size_,
bits_);
@@ -1088,7 +1093,8 @@ void fast::Quantize::eval_gpu(
int packs_per_int = (bits_ == 3 || bits_ == 5) ? 8
: bits_ == 6 ? 4
: 8 / bits_;
int per_thread = dequantize_ ? packs_per_int : group_size_ / simd_size;
int per_thread =
dequantize_ ? packs_per_int : std::max(group_size_ / simd_size, 1);
size_t nthreads =
dequantize_ ? out.size() / packs_per_int : w.size() / per_thread;

View File

@@ -2,7 +2,6 @@
// Required for using M_PI in MSVC.
#define _USE_MATH_DEFINES
#include <algorithm>
#include <climits>
#include <cmath>
@@ -4259,8 +4258,11 @@ std::vector<array> fp_quantize(
} else {
// convert to e8m0
auto z = array(0, scales.dtype());
scales =
where(equal(scales, z, s), z, astype(log2(scales, s), int32, s), s);
scales = where(
equal(scales, z, s),
z,
astype(round(log2(scales, s), s), int32, s),
s);
wq = divide(wq, power(array(2.0f, w.dtype()), scales, s), s);
scales = astype(add(scales, array(127, int32), s), uint8, s);

View File

@@ -92,7 +92,6 @@ class TestQuantized(mlx_tests.MLXTestCase):
with self.assertRaises(ValueError):
mx.quantize(w, group_size=32, bits=7, mode="mxfp8")
w_q, scales = mx.quantize(w, group_size=32, bits=8, mode="mxfp8")
with self.assertRaises(ValueError):
@@ -102,7 +101,8 @@ class TestQuantized(mlx_tests.MLXTestCase):
mx.dequantize(w_q, scales, group_size=32, bits=4, mode="mxfp8")
w_hat = mx.dequantize(w_q, scales, group_size=32, bits=8, mode="mxfp8")
self.assertTrue(mx.allclose(w, w_hat, rtol=1e-1, atol=1e-2))
self.assertTrue(mx.allclose(w, w_hat, rtol=1e-1, atol=1e-1))
# test quantize/dequantize 0s
a = mx.zeros((256, 512))