mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-18 01:50:16 +08:00
MLE and L1 loss functions (#88)
* MLE and L1 loss functions * logsoftmax change and tests * subtract max logit for numerical stability * l1 name change * cross entropy reduction + unit tests * docstrings * l1 test name change * old loss impl + default none
This commit is contained in:
@@ -2,7 +2,45 @@
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
def cross_entropy(logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = 'none'):
|
||||
"""
|
||||
Computes the cross entropy loss between logits and targets.
|
||||
|
||||
def cross_entropy(logits: mx.array, targets: mx.array, axis: int = -1):
|
||||
Args:
|
||||
logits (mx.array): The predicted logits.
|
||||
targets (mx.array): The target values.
|
||||
axis (int, optional): The axis over which to compute softmax. Defaults to -1.
|
||||
reduction (str, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.
|
||||
'none': no reduction will be applied.
|
||||
'mean': the sum of the output will be divided by the number of elements in the output.
|
||||
'sum': the output will be summed.
|
||||
Defaults to 'none'.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed cross entropy loss.
|
||||
"""
|
||||
score = mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
|
||||
return mx.logsumexp(logits, axis=axis) - score
|
||||
loss = mx.logsumexp(logits, axis=axis) - score
|
||||
|
||||
if reduction == 'mean':
|
||||
return mx.mean(loss)
|
||||
elif reduction == 'sum':
|
||||
return mx.sum(loss)
|
||||
elif reduction == 'none':
|
||||
return loss
|
||||
else:
|
||||
raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.")
|
||||
|
||||
def l1_loss(predictions: mx.array, targets: mx.array):
|
||||
"""
|
||||
Computes the L1 loss between predictions and targets.
|
||||
|
||||
Args:
|
||||
predictions (mx.array): The predicted values.
|
||||
targets (mx.array): The target values.
|
||||
|
||||
Returns:
|
||||
mx.array: The computed L1 loss.
|
||||
"""
|
||||
return mx.mean(mx.abs(predictions - targets))
|
||||
|
||||
|
Reference in New Issue
Block a user