MLE and L1 loss functions (#88)

* MLE and L1 loss functions

* logsoftmax change and tests

* subtract max logit for numerical stability

* l1 name change

* cross entropy reduction + unit tests

* docstrings

* l1 test name change

* old loss impl + default none
This commit is contained in:
Kai Ma
2023-12-08 23:21:37 -05:00
committed by GitHub
parent 2b714714e1
commit 641d316484
2 changed files with 61 additions and 5 deletions

View File

@@ -2,7 +2,45 @@
import mlx.core as mx
def cross_entropy(logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = 'none'):
"""
Computes the cross entropy loss between logits and targets.
def cross_entropy(logits: mx.array, targets: mx.array, axis: int = -1):
Args:
logits (mx.array): The predicted logits.
targets (mx.array): The target values.
axis (int, optional): The axis over which to compute softmax. Defaults to -1.
reduction (str, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.
'none': no reduction will be applied.
'mean': the sum of the output will be divided by the number of elements in the output.
'sum': the output will be summed.
Defaults to 'none'.
Returns:
mx.array: The computed cross entropy loss.
"""
score = mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
return mx.logsumexp(logits, axis=axis) - score
loss = mx.logsumexp(logits, axis=axis) - score
if reduction == 'mean':
return mx.mean(loss)
elif reduction == 'sum':
return mx.sum(loss)
elif reduction == 'none':
return loss
else:
raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.")
def l1_loss(predictions: mx.array, targets: mx.array):
"""
Computes the L1 loss between predictions and targets.
Args:
predictions (mx.array): The predicted values.
targets (mx.array): The target values.
Returns:
mx.array: The computed L1 loss.
"""
return mx.mean(mx.abs(predictions - targets))