mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-20 08:01:12 +08:00
MLE and L1 loss functions (#88)
* MLE and L1 loss functions * logsoftmax change and tests * subtract max logit for numerical stability * l1 name change * cross entropy reduction + unit tests * docstrings * l1 test name change * old loss impl + default none
This commit is contained in:
parent
2b714714e1
commit
641d316484
@ -2,7 +2,45 @@
|
|||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
|
|
||||||
|
def cross_entropy(logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = 'none'):
|
||||||
|
"""
|
||||||
|
Computes the cross entropy loss between logits and targets.
|
||||||
|
|
||||||
def cross_entropy(logits: mx.array, targets: mx.array, axis: int = -1):
|
Args:
|
||||||
|
logits (mx.array): The predicted logits.
|
||||||
|
targets (mx.array): The target values.
|
||||||
|
axis (int, optional): The axis over which to compute softmax. Defaults to -1.
|
||||||
|
reduction (str, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.
|
||||||
|
'none': no reduction will be applied.
|
||||||
|
'mean': the sum of the output will be divided by the number of elements in the output.
|
||||||
|
'sum': the output will be summed.
|
||||||
|
Defaults to 'none'.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
mx.array: The computed cross entropy loss.
|
||||||
|
"""
|
||||||
score = mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
|
score = mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
|
||||||
return mx.logsumexp(logits, axis=axis) - score
|
loss = mx.logsumexp(logits, axis=axis) - score
|
||||||
|
|
||||||
|
if reduction == 'mean':
|
||||||
|
return mx.mean(loss)
|
||||||
|
elif reduction == 'sum':
|
||||||
|
return mx.sum(loss)
|
||||||
|
elif reduction == 'none':
|
||||||
|
return loss
|
||||||
|
else:
|
||||||
|
raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.")
|
||||||
|
|
||||||
|
def l1_loss(predictions: mx.array, targets: mx.array):
|
||||||
|
"""
|
||||||
|
Computes the L1 loss between predictions and targets.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
predictions (mx.array): The predicted values.
|
||||||
|
targets (mx.array): The target values.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
mx.array: The computed L1 loss.
|
||||||
|
"""
|
||||||
|
return mx.mean(mx.abs(predictions - targets))
|
||||||
|
|
||||||
|
@ -10,7 +10,6 @@ import mlx_tests
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
||||||
|
|
||||||
|
|
||||||
class TestNN(mlx_tests.MLXTestCase):
|
class TestNN(mlx_tests.MLXTestCase):
|
||||||
def test_linear(self):
|
def test_linear(self):
|
||||||
inputs = mx.zeros((10, 4))
|
inputs = mx.zeros((10, 4))
|
||||||
@ -21,8 +20,27 @@ class TestNN(mlx_tests.MLXTestCase):
|
|||||||
def test_cross_entropy(self):
|
def test_cross_entropy(self):
|
||||||
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
|
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
|
||||||
targets = mx.array([0, 1])
|
targets = mx.array([0, 1])
|
||||||
losses = nn.losses.cross_entropy(logits, targets)
|
|
||||||
self.assertTrue(mx.array_equal(losses, mx.zeros((2,))))
|
# Test with reduction 'none'
|
||||||
|
losses_none = nn.losses.cross_entropy(logits, targets, reduction='none')
|
||||||
|
expected_none = mx.array([0.0, 0.0])
|
||||||
|
self.assertTrue(mx.array_equal(losses_none, expected_none))
|
||||||
|
|
||||||
|
# Test with reduction 'mean'
|
||||||
|
losses_mean = nn.losses.cross_entropy(logits, targets, reduction='mean')
|
||||||
|
expected_mean = mx.mean(expected_none)
|
||||||
|
self.assertEqual(losses_mean, expected_mean)
|
||||||
|
|
||||||
|
# Test with reduction 'sum'
|
||||||
|
losses_sum = nn.losses.cross_entropy(logits, targets, reduction='sum')
|
||||||
|
expected_sum = mx.sum(expected_none)
|
||||||
|
self.assertEqual(losses_sum, expected_sum)
|
||||||
|
|
||||||
|
def test_l1_loss(self):
|
||||||
|
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
|
||||||
|
targets = mx.array([0.5, 0.2, 0.9, 0.0])
|
||||||
|
losses = nn.losses.l1_loss(predictions, targets)
|
||||||
|
self.assertEqual(losses, 0.0)
|
||||||
|
|
||||||
def test_gelu(self):
|
def test_gelu(self):
|
||||||
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
|
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
|
||||||
|
Loading…
Reference in New Issue
Block a user