MLE and L1 loss functions (#88)

* MLE and L1 loss functions

* logsoftmax change and tests

* subtract max logit for numerical stability

* l1 name change

* cross entropy reduction + unit tests

* docstrings

* l1 test name change

* old loss impl + default none
This commit is contained in:
Kai Ma 2023-12-08 23:21:37 -05:00 committed by GitHub
parent 2b714714e1
commit 641d316484
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 61 additions and 5 deletions

View File

@ -2,7 +2,45 @@
import mlx.core as mx
def cross_entropy(logits: mx.array, targets: mx.array, axis: int = -1, reduction: str = 'none'):
"""
Computes the cross entropy loss between logits and targets.
def cross_entropy(logits: mx.array, targets: mx.array, axis: int = -1):
Args:
logits (mx.array): The predicted logits.
targets (mx.array): The target values.
axis (int, optional): The axis over which to compute softmax. Defaults to -1.
reduction (str, optional): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.
'none': no reduction will be applied.
'mean': the sum of the output will be divided by the number of elements in the output.
'sum': the output will be summed.
Defaults to 'none'.
Returns:
mx.array: The computed cross entropy loss.
"""
score = mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1)
return mx.logsumexp(logits, axis=axis) - score
loss = mx.logsumexp(logits, axis=axis) - score
if reduction == 'mean':
return mx.mean(loss)
elif reduction == 'sum':
return mx.sum(loss)
elif reduction == 'none':
return loss
else:
raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.")
def l1_loss(predictions: mx.array, targets: mx.array):
"""
Computes the L1 loss between predictions and targets.
Args:
predictions (mx.array): The predicted values.
targets (mx.array): The target values.
Returns:
mx.array: The computed L1 loss.
"""
return mx.mean(mx.abs(predictions - targets))

View File

@ -10,7 +10,6 @@ import mlx_tests
import numpy as np
from mlx.utils import tree_flatten, tree_map, tree_unflatten
class TestNN(mlx_tests.MLXTestCase):
def test_linear(self):
inputs = mx.zeros((10, 4))
@ -21,8 +20,27 @@ class TestNN(mlx_tests.MLXTestCase):
def test_cross_entropy(self):
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
targets = mx.array([0, 1])
losses = nn.losses.cross_entropy(logits, targets)
self.assertTrue(mx.array_equal(losses, mx.zeros((2,))))
# Test with reduction 'none'
losses_none = nn.losses.cross_entropy(logits, targets, reduction='none')
expected_none = mx.array([0.0, 0.0])
self.assertTrue(mx.array_equal(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.cross_entropy(logits, targets, reduction='mean')
expected_mean = mx.mean(expected_none)
self.assertEqual(losses_mean, expected_mean)
# Test with reduction 'sum'
losses_sum = nn.losses.cross_entropy(logits, targets, reduction='sum')
expected_sum = mx.sum(expected_none)
self.assertEqual(losses_sum, expected_sum)
def test_l1_loss(self):
predictions = mx.array([0.5, 0.2, 0.9, 0.0])
targets = mx.array([0.5, 0.2, 0.9, 0.0])
losses = nn.losses.l1_loss(predictions, targets)
self.assertEqual(losses, 0.0)
def test_gelu(self):
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]