mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00
Doc theme (#5)
* change docs theme + links + logo * move mlx intro to landing page
This commit is contained in:
parent
7546fdb100
commit
6449a8682a
@ -7,7 +7,7 @@ for example with `conda`:
|
|||||||
|
|
||||||
```
|
```
|
||||||
conda install sphinx
|
conda install sphinx
|
||||||
pip install sphinx-rtd-theme
|
pip install sphinx-book-theme
|
||||||
```
|
```
|
||||||
|
|
||||||
### Build
|
### Build
|
||||||
|
BIN
docs/src/_static/mlx_logo.png
Normal file
BIN
docs/src/_static/mlx_logo.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 7.2 KiB |
@ -39,7 +39,17 @@ pygments_style = "sphinx"
|
|||||||
|
|
||||||
# -- Options for HTML output -------------------------------------------------
|
# -- Options for HTML output -------------------------------------------------
|
||||||
|
|
||||||
html_theme = "sphinx_rtd_theme"
|
html_theme = "sphinx_book_theme"
|
||||||
|
|
||||||
|
html_theme_options = {
|
||||||
|
"show_toc_level": 2,
|
||||||
|
"repository_url": "https://github.com/ml-explore/mlx",
|
||||||
|
"use_repository_button": True,
|
||||||
|
"navigation_with_keys": False,
|
||||||
|
}
|
||||||
|
|
||||||
|
html_logo = "_static/mlx_logo.png"
|
||||||
|
|
||||||
|
|
||||||
# -- Options for HTMLHelp output ---------------------------------------------
|
# -- Options for HTMLHelp output ---------------------------------------------
|
||||||
|
|
||||||
|
@ -1,6 +1,30 @@
|
|||||||
MLX
|
MLX
|
||||||
===
|
===
|
||||||
|
|
||||||
|
MLX is a NumPy-like array framework designed for efficient and flexible
|
||||||
|
machine learning on Apple silicon.
|
||||||
|
|
||||||
|
The Python API closely follows NumPy with a few exceptions. MLX also has a
|
||||||
|
fully featured C++ API which closely follows the Python API.
|
||||||
|
|
||||||
|
The main differences between MLX and NumPy are:
|
||||||
|
|
||||||
|
- **Composable function transformations**: MLX has composable function
|
||||||
|
transformations for automatic differentiation, automatic vectorization,
|
||||||
|
and computation graph optimization.
|
||||||
|
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||||
|
materialized when needed.
|
||||||
|
- **Multi-device**: Operations can run on any of the supported devices (CPU,
|
||||||
|
GPU, ...)
|
||||||
|
|
||||||
|
The design of MLX is strongly inspired by frameworks like `PyTorch
|
||||||
|
<https://pytorch.org/>`_, `Jax <https://github.com/google/jax>`_, and
|
||||||
|
`ArrayFire <https://arrayfire.org/>`_. A noteable difference from these
|
||||||
|
frameworks and MLX is the *unified memory model*. Arrays in MLX live in shared
|
||||||
|
memory. Operations on MLX arrays can be performed on any of the supported
|
||||||
|
device types without performing data copies. Currently supported device types
|
||||||
|
are the CPU and GPU.
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
:caption: Install
|
:caption: Install
|
||||||
:maxdepth: 1
|
:maxdepth: 1
|
||||||
|
@ -1,28 +1,6 @@
|
|||||||
Quick Start Guide
|
Quick Start Guide
|
||||||
=================
|
=================
|
||||||
|
|
||||||
MLX is a NumPy-like array framework designed for efficient and flexible
|
|
||||||
machine learning on Apple silicon. The Python API closely follows NumPy with
|
|
||||||
a few exceptions. MLX also has a fully featured C++ API which closely follows
|
|
||||||
the Python API.
|
|
||||||
|
|
||||||
The main differences between MLX and NumPy are:
|
|
||||||
|
|
||||||
- **Composable function transformations**: MLX has composable function
|
|
||||||
transformations for automatic differentiation, automatic vectorization,
|
|
||||||
and computation graph optimization.
|
|
||||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
|
||||||
materialized when needed.
|
|
||||||
- **Multi-device**: Operations can run on any of the supported devices (CPU,
|
|
||||||
GPU, ...)
|
|
||||||
|
|
||||||
The design of MLX is strongly inspired by frameworks like `PyTorch
|
|
||||||
<https://pytorch.org/>`_, `Jax <https://github.com/google/jax>`_, and
|
|
||||||
`ArrayFire <https://arrayfire.org/>`_. A noteable difference from these
|
|
||||||
frameworks and MLX is the *unified memory model*. Arrays in MLX live in shared
|
|
||||||
memory. Operations on MLX arrays can be performed on any of the supported
|
|
||||||
device types without performing data copies. Currently supported device types
|
|
||||||
are the CPU and GPU.
|
|
||||||
|
|
||||||
Basics
|
Basics
|
||||||
------
|
------
|
||||||
|
Loading…
Reference in New Issue
Block a user