Refactored four-step

This commit is contained in:
Angelos Katharopoulos 2025-05-08 00:25:38 -07:00
parent da98e8bce8
commit 6593281d25

View File

@ -117,6 +117,7 @@ struct OldFFTPlan {
class FFTPlan {
public:
enum FFTType {
UNSUPPORTED,
NOOP,
STOCKHAM,
RADER,
@ -137,6 +138,8 @@ class FFTPlan {
type_ = SMALL_FOUR_STEP;
n2_ = n > 65536 ? 1024 : 64;
n1_ = n / n2_;
steps1_ = stockham_decompose(n1_);
steps2_ = stockham_decompose(n2_);
} else {
type_ = LARGE_FOUR_STEP;
}
@ -156,6 +159,7 @@ class FFTPlan {
// throw for now but we have rader and bluestein to do
else {
type_ = UNSUPPORTED;
}
}
@ -171,12 +175,30 @@ class FFTPlan {
return steps_;
}
int first_size() const {
return n1_;
}
const std::vector<int>& first_steps() const {
return steps1_;
}
int second_size() const {
return n2_;
}
const std::vector<int>& second_steps() const {
return steps2_;
}
private:
int n_;
FFTType type_;
std::vector<int> steps_;
int n1_;
std::vector<int> steps1_;
int n2_;
std::vector<int> steps2_;
int bluestein_n_;
};
@ -997,11 +1019,11 @@ void fft_stockham_inplace(
out.dtype() == float32 ? out.size() / n : in.size() / n;
auto& steps = plan.steps();
int elems_per_thread = compute_elems_per_thread(n, steps);
int threads_per_fft = ceildiv(plan.size(), elems_per_thread);
int tg_batch_size = std::max(MIN_THREADGROUP_MEM_SIZE / plan.size(), 1);
int tg_mem_size = next_power_of_2(tg_batch_size * plan.size());
int threads_per_fft = ceildiv(n, elems_per_thread);
int tg_batch_size = std::max(MIN_THREADGROUP_MEM_SIZE / n, 1);
int tg_mem_size = next_power_of_2(tg_batch_size * n);
int batch_size = ceildiv(total_batch_size, tg_batch_size);
batch_size = real ? ceildiv(batch_size, 2) : batch_size;
batch_size = real ? ceildiv(batch_size, 2) : batch_size; // 2 RFFTs at once
std::vector<MTLFC> func_consts = {
{&inverse, MTL::DataType::DataTypeBool, 0},
{&power_of_2, MTL::DataType::DataTypeBool, 1},
@ -1029,13 +1051,99 @@ void fft_stockham_inplace(
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder.set_bytes(n, 2);
compute_encoder.set_bytes(batch_size, 3);
compute_encoder.set_bytes(total_batch_size, 3);
MTL::Size group_dims(1, tg_batch_size, threads_per_fft);
MTL::Size grid_dims(batch_size, tg_batch_size, threads_per_fft);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
void fft_four_step_inplace(
const FFTPlan& plan,
const array& in_,
array& out,
size_t axis,
bool inverse,
bool real,
metal::Device& d,
const Stream& s) {
// Prepare the input and output arrays such that `axis` has stride 1.
// Possibly copy the input but never the output as it doesn't have anything
// useful in it yet.
array in = ensure_fastest_moving_axis(in_, axis, d, s);
prepare_output_array(in, out, axis);
// Also prepare the intermediate array for the four-step fft which is
// implemented with 2 kernel calls.
array intermediate(
(real && inverse) ? out.shape() : in.shape(), complex64, nullptr, {});
intermediate.set_data(allocator::malloc(intermediate.nbytes()));
prepare_output_array(in, intermediate, axis);
d.add_temporary(intermediate, s.index);
// Make the two calls
for (int step = 0; step < 2; step++) {
// Create the parameters
int n1 = plan.first_size();
int n2 = plan.second_size();
int n = (step == 0) ? n1 : n2;
bool power_of_2 = true;
int total_batch_size =
out.dtype() == float32 ? out.size() / n : in.size() / n;
auto& steps = (step == 0) ? plan.first_steps() : plan.second_steps();
int elems_per_thread = compute_elems_per_thread(n, steps);
int threads_per_fft = ceildiv(n, elems_per_thread);
int tg_batch_size =
std::max(MIN_THREADGROUP_MEM_SIZE / n, MIN_COALESCE_WIDTH);
int tg_mem_size = next_power_of_2(tg_batch_size * n);
int batch_size = ceildiv(total_batch_size, tg_batch_size);
std::vector<MTLFC> func_consts = {
{&inverse, MTL::DataType::DataTypeBool, 0},
{&power_of_2, MTL::DataType::DataTypeBool, 1},
{&elems_per_thread, MTL::DataType::DataTypeInt, 2}};
for (int i = 0; i < steps.size(); i++) {
func_consts.emplace_back(&steps[i], MTL::DataType::DataTypeInt, 4 + i);
}
// Get the kernel
auto in_type = in.dtype() == float32 ? "float" : "float2";
auto out_type = out.dtype() == float32 ? "float" : "float2";
std::string hash_name;
std::string kname;
kname.reserve(64);
hash_name.reserve(64);
concatenate(
kname,
"four_step_mem_",
tg_mem_size,
"_",
in_type,
"_",
out_type,
"_",
step,
(real ? "_true" : "_false"));
concatenate(hash_name, kname, "_n", n, "_inv_", inverse);
auto template_def = get_template_definition(
kname, "four_step_fft", tg_mem_size, in_type, out_type, step, real);
auto kernel =
get_fft_kernel(d, kname, hash_name, func_consts, template_def);
// Launch it
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array((step == 0) ? in : intermediate, 0);
compute_encoder.set_output_array((step == 0) ? intermediate : out, 1);
compute_encoder.set_bytes(n1, 2);
compute_encoder.set_bytes(n2, 3);
compute_encoder.set_bytes(total_batch_size, 4);
MTL::Size group_dims(1, tg_batch_size, threads_per_fft);
MTL::Size grid_dims(batch_size, tg_batch_size, threads_per_fft);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
void fft_op_inplace(
const array& in,
array& out,
@ -1053,10 +1161,17 @@ void fft_op_inplace(
std::cout << "--------------> 1-size FFT <-----------------" << std::endl;
break;
case FFTPlan::STOCKHAM:
fft_stockham_inplace(plan, in, out, axis, inverse, real, d, s);
break;
return fft_stockham_inplace(plan, in, out, axis, inverse, real, d, s);
case FFTPlan::SMALL_FOUR_STEP:
return fft_four_step_inplace(plan, in, out, axis, inverse, real, d, s);
case FFTPlan::UNSUPPORTED: {
std::string msg;
concatenate(msg, "FFT of size ", plan.size(), " not supported");
throw std::runtime_error(msg);
}
default:
std::cout << "----- NYI ----" << std::endl;
break;
}
}