mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Merge bc6f00c00e into 828c5f1137
This commit is contained in:
54
cmake/FindNCCL.cmake
Normal file
54
cmake/FindNCCL.cmake
Normal file
@@ -0,0 +1,54 @@
|
||||
# FindNCCL.cmake
|
||||
# This module finds the NVIDIA NCCL library and its include directories.
|
||||
|
||||
set(NCCL_ROOT_DIR
|
||||
$ENV{NCCL_ROOT_DIR}
|
||||
CACHE PATH "Folder contains NVIDIA NCCL")
|
||||
|
||||
find_path(
|
||||
NCCL_INCLUDE_DIRS
|
||||
NAMES nccl.h
|
||||
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/include)
|
||||
|
||||
if($ENV{USE_STATIC_NCCL})
|
||||
message(
|
||||
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
|
||||
set(NCCL_LIBNAME "libnccl_static.a")
|
||||
else()
|
||||
set(NCCL_LIBNAME "nccl")
|
||||
endif()
|
||||
|
||||
find_library(
|
||||
NCCL_LIBRARIES
|
||||
NAMES ${NCCL_LIBNAME}
|
||||
HINTS ${NCCL_LIB_DIR}
|
||||
${NCCL_ROOT_DIR}
|
||||
${NCCL_ROOT_DIR}/lib
|
||||
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
|
||||
${NCCL_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
|
||||
NCCL_LIBRARIES)
|
||||
|
||||
if(NCCL_FOUND)
|
||||
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
|
||||
message(
|
||||
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
|
||||
file(
|
||||
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
|
||||
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
|
||||
LIMIT_COUNT 1)
|
||||
if(NCCL_MAJOR_VERSION_DEFINED)
|
||||
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
|
||||
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
|
||||
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
|
||||
endif()
|
||||
message(
|
||||
STATUS
|
||||
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
|
||||
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
|
||||
endif()
|
||||
@@ -19,6 +19,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
|
||||
87
mlx/backend/cuda/distributed.cu
Normal file
87
mlx/backend/cuda/distributed.cu
Normal file
@@ -0,0 +1,87 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/distributed/primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core {
|
||||
namespace distributed {
|
||||
void AllReduce::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Here I assume for now that in is donatable and contiguous.
|
||||
// TODO
|
||||
assert(inputs.size() == 1);
|
||||
assert(outputs.size() == 1);
|
||||
|
||||
auto& input = inputs[0];
|
||||
auto& output = outputs[0];
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
output.set_data(allocator::malloc(output.nbytes()));
|
||||
|
||||
encoder.set_input_array(input);
|
||||
encoder.set_output_array(output);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
auto& s = stream();
|
||||
|
||||
switch (reduce_type_) {
|
||||
case Sum:
|
||||
distributed::detail::all_sum(group(), input, output, s);
|
||||
break;
|
||||
case Max:
|
||||
distributed::detail::all_max(group(), input, output, s);
|
||||
break;
|
||||
case Min:
|
||||
distributed::detail::all_min(group(), input, output, s);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"Only all reduce sum, max, and min are supported.");
|
||||
}
|
||||
}
|
||||
|
||||
void Send::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Here FOR NOW I assume that it is always row_contigious
|
||||
// because not sure how to copy correctly
|
||||
// TODO
|
||||
assert(inputs.size() == 1);
|
||||
assert(outputs.size() == 1);
|
||||
|
||||
distributed::detail::send(group(), inputs[0], dst_, stream());
|
||||
outputs[0].copy_shared_buffer(inputs[0]);
|
||||
}
|
||||
|
||||
void Recv::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 0);
|
||||
assert(outputs.size() == 1);
|
||||
outputs[0].set_data(allocator::malloc(outputs[0].nbytes()));
|
||||
distributed::detail::recv(group(), outputs[0], src_, stream());
|
||||
}
|
||||
|
||||
void AllGather::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Here FOR NOW I assume that it is always row_contigious
|
||||
// because not sure how to copy correctly
|
||||
// TODO
|
||||
assert(inputs.size() == 1);
|
||||
assert(outputs.size() == 1);
|
||||
|
||||
auto& input = inputs[0];
|
||||
auto& output = outputs[0];
|
||||
|
||||
output.copy_shared_buffer(input);
|
||||
distributed::detail::all_gather(group(), input, output, stream());
|
||||
}
|
||||
}// namespace distributed
|
||||
}
|
||||
60
mlx/backend/cuda/iterators/strided_iterator.cuh
Normal file
60
mlx/backend/cuda/iterators/strided_iterator.cuh
Normal file
@@ -0,0 +1,60 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <thrust/iterator/iterator_adaptor.h>
|
||||
#include <thrust/iterator/iterator_facade.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// RandomAccessIterator for strided access to array entries.
|
||||
template <typename Iterator, typename Stride = int64_t>
|
||||
class strided_iterator
|
||||
: public thrust::
|
||||
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
|
||||
public:
|
||||
using super_t =
|
||||
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
|
||||
|
||||
using reference = typename super_t::reference;
|
||||
using difference_type = typename super_t::difference_type;
|
||||
|
||||
__host__ __device__ strided_iterator(Iterator it, Stride stride)
|
||||
: super_t(it), stride_(stride) {}
|
||||
|
||||
__host__ __device__ Stride stride() const {
|
||||
return stride_;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class thrust::iterator_core_access;
|
||||
|
||||
__host__ __device__ bool equal(const strided_iterator& other) const {
|
||||
return this->base() == other.base();
|
||||
}
|
||||
|
||||
__host__ __device__ void advance(difference_type n) {
|
||||
this->base_reference() += n * stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ void increment() {
|
||||
this->base_reference() += stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ void decrement() {
|
||||
this->base_reference() -= stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ difference_type
|
||||
distance_to(const strided_iterator& other) const {
|
||||
const difference_type dist = other.base() - this->base();
|
||||
_CCCL_ASSERT(
|
||||
dist % stride() == 0,
|
||||
"Underlying iterator difference must be divisible by the stride");
|
||||
return dist / stride();
|
||||
}
|
||||
|
||||
Stride stride_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -6,6 +6,7 @@
|
||||
#include "mlx/backend/cuda/gemms/gemv.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <numeric>
|
||||
|
||||
@@ -57,11 +57,11 @@ NO_GPU(ScaledDotProductAttention)
|
||||
NO_GPU_MULTI(CustomKernel)
|
||||
} // namespace fast
|
||||
|
||||
namespace distributed {
|
||||
NO_GPU_MULTI(AllReduce)
|
||||
NO_GPU_MULTI(AllGather)
|
||||
NO_GPU_MULTI(Send)
|
||||
NO_GPU_MULTI(Recv)
|
||||
} // namespace distributed
|
||||
// namespace distributed {
|
||||
// NO_GPU_MULTI(AllReduce)
|
||||
// NO_GPU_MULTI(AllGather)
|
||||
// NO_GPU_MULTI(Send)
|
||||
// NO_GPU_MULTI(Recv)
|
||||
// } // namespace distributed
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
84
mlx/backend/cuda/reduce/segmented_reduce.cu
Normal file
84
mlx/backend/cuda/reduce/segmented_reduce.cu
Normal file
@@ -0,0 +1,84 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/cast_op.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <cub/device/device_reduce.cuh>
|
||||
#include <cub/device/device_segmented_reduce.cuh>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename... Args>
|
||||
void cub_all_reduce(cu::CommandEncoder& encoder, Args&&... args) {
|
||||
// Allocate temporary storage.
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(cub::DeviceReduce::Reduce(nullptr, size, args...));
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
// Run op.
|
||||
CHECK_CUDA_ERROR(cub::DeviceReduce::Reduce(temp.data<void>(), size, args...));
|
||||
}
|
||||
|
||||
template <typename... Args>
|
||||
void cub_segmented_reduce(cu::CommandEncoder& encoder, Args&&... args) {
|
||||
// Allocate temporary storage.
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedReduce::Reduce(nullptr, size, args...));
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
// Run op.
|
||||
CHECK_CUDA_ERROR(
|
||||
cub::DeviceSegmentedReduce::Reduce(temp.data<void>(), size, args...));
|
||||
}
|
||||
|
||||
struct MultiplyOp {
|
||||
int factor;
|
||||
__device__ int operator()(int i) {
|
||||
return i * factor;
|
||||
}
|
||||
};
|
||||
|
||||
void segmented_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan) {
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, {
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
using InType = cuda_type_t<CTYPE>;
|
||||
using OutType = cu::ReduceResult<OP, InType>::type;
|
||||
auto in_iter = cu::make_cast_iterator<OutType>(
|
||||
thrust::device_pointer_cast(in.data<InType>()));
|
||||
auto out_ptr = thrust::device_pointer_cast(out.data<OutType>());
|
||||
auto init = cu::ReduceInit<OP, InType>::value();
|
||||
|
||||
if (plan.type == ContiguousAllReduce) {
|
||||
cub_all_reduce(
|
||||
encoder, in_iter, out_ptr, in.data_size(), OP(), init, stream);
|
||||
} else if (plan.type == ContiguousReduce) {
|
||||
auto offsets = thrust::make_transform_iterator(
|
||||
thrust::make_counting_iterator(0), MultiplyOp{plan.shape.back()});
|
||||
cub_segmented_reduce(
|
||||
encoder,
|
||||
in_iter,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
offsets,
|
||||
offsets + 1,
|
||||
OP(),
|
||||
init,
|
||||
stream);
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported plan in segmented_reduce.");
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -6,3 +6,4 @@ target_sources(
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/mpi)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ring)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/nccl)
|
||||
|
||||
@@ -2,9 +2,11 @@
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
#include <iostream>
|
||||
#include "mlx/distributed/distributed.h"
|
||||
#include "mlx/distributed/distributed_impl.h"
|
||||
#include "mlx/distributed/mpi/mpi.h"
|
||||
#include "mlx/distributed/nccl/nccl.h"
|
||||
#include "mlx/distributed/ring/ring.h"
|
||||
|
||||
namespace mlx::core::distributed {
|
||||
@@ -80,7 +82,7 @@ class EmptyGroup : public GroupImpl {
|
||||
} // namespace detail
|
||||
|
||||
bool is_available() {
|
||||
return mpi::is_available() || ring::is_available();
|
||||
return mpi::is_available() || ring::is_available() || nccl::is_available();
|
||||
}
|
||||
|
||||
int Group::rank() const {
|
||||
@@ -111,6 +113,8 @@ Group init(bool strict /* = false */, const std::string& bk /* = "any" */) {
|
||||
group = mpi::init(strict);
|
||||
} else if (bk == "ring") {
|
||||
group = ring::init(strict);
|
||||
} else if (bk == "nccl") {
|
||||
group = nccl::init(strict);
|
||||
} else if (bk == "any") {
|
||||
group = ring::init(false);
|
||||
bk_ = "ring";
|
||||
|
||||
8
mlx/distributed/nccl/CMakeLists.txt
Normal file
8
mlx/distributed/nccl/CMakeLists.txt
Normal file
@@ -0,0 +1,8 @@
|
||||
if(MLX_BUILD_CUDA)
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/nccl.cpp)
|
||||
find_package(NCCL REQUIRED)
|
||||
target_link_libraries(mlx PRIVATE ${NCCL_LIBRARIES})
|
||||
target_include_directories(mlx PRIVATE ${NCCL_INCLUDE_DIRS})
|
||||
else()
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/no_nccl.cpp)
|
||||
endif()
|
||||
405
mlx/distributed/nccl/nccl.cpp
Normal file
405
mlx/distributed/nccl/nccl.cpp
Normal file
@@ -0,0 +1,405 @@
|
||||
#include <arpa/inet.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <nccl.h>
|
||||
#include <netdb.h>
|
||||
#include <sys/socket.h>
|
||||
#include <unistd.h>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include <mutex>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/distributed/distributed.h"
|
||||
#include "mlx/distributed/distributed_impl.h"
|
||||
|
||||
namespace mlx::core::distributed::nccl {
|
||||
|
||||
#define CHECK_CUDA(cmd) \
|
||||
do { \
|
||||
cudaError_t e = cmd; \
|
||||
if (e != cudaSuccess) { \
|
||||
fprintf( \
|
||||
stderr, \
|
||||
"CUDA error %s:%d '%s'\n", \
|
||||
__FILE__, \
|
||||
__LINE__, \
|
||||
cudaGetErrorString(e)); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define CHECK_NCCL(cmd) \
|
||||
do { \
|
||||
ncclResult_t r = cmd; \
|
||||
if (r != ncclSuccess) { \
|
||||
fprintf( \
|
||||
stderr, \
|
||||
"NCCL error %s:%d '%s'\n", \
|
||||
__FILE__, \
|
||||
__LINE__, \
|
||||
ncclGetErrorString(r)); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
namespace detail {
|
||||
|
||||
inline void sendAll(int sock, const void* buf, size_t len) {
|
||||
const char* ptr = reinterpret_cast<const char*>(buf);
|
||||
while (len > 0) {
|
||||
ssize_t sent = send(sock, ptr, len, 0);
|
||||
if (sent <= 0) {
|
||||
perror("send");
|
||||
exit(1);
|
||||
}
|
||||
ptr += sent;
|
||||
len -= sent;
|
||||
}
|
||||
}
|
||||
|
||||
inline void recvAll(int sock, void* buf, size_t len) {
|
||||
char* ptr = reinterpret_cast<char*>(buf);
|
||||
while (len > 0) {
|
||||
ssize_t rec = recv(sock, ptr, len, 0);
|
||||
if (rec <= 0) {
|
||||
perror("recv");
|
||||
exit(1);
|
||||
}
|
||||
ptr += rec;
|
||||
len -= rec;
|
||||
}
|
||||
}
|
||||
|
||||
inline void bootstrap_unique_id(
|
||||
ncclUniqueId& id,
|
||||
int rank,
|
||||
int size,
|
||||
const std::string& initMethod) {
|
||||
// Parse the init method to extract the host and port
|
||||
if (initMethod.rfind("tcp://", 0) != 0)
|
||||
throw;
|
||||
auto hostport = initMethod.substr(6);
|
||||
auto colon = hostport.find(':');
|
||||
std::string host = hostport.substr(0, colon);
|
||||
int port = std::stoi(hostport.substr(colon + 1));
|
||||
|
||||
if (rank == 0) {
|
||||
// create a unique id on the rank 0
|
||||
CHECK_NCCL(ncclGetUniqueId(&id));
|
||||
|
||||
// create a socket to send the unique id to all other ranks
|
||||
int sock = socket(AF_INET, SOCK_STREAM, 0);
|
||||
|
||||
if (sock < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] Couldn't create socket (error: " << errno << ")";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
sockaddr_in serv = {};
|
||||
serv.sin_family = AF_INET;
|
||||
serv.sin_addr.s_addr = htonl(INADDR_ANY);
|
||||
serv.sin_port = htons(port);
|
||||
|
||||
int reuse = 1;
|
||||
// Without this, if rank-0 crashes or restarts process quickly,
|
||||
// the OS might refuse to let binding to the same port, so reuse
|
||||
|
||||
if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse)) < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] setsockopt() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
if (bind(sock, reinterpret_cast<sockaddr*>(&serv), sizeof(serv)) < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] bind() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
if (listen(sock, size - 1) < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] listen() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
for (int peer = 1; peer < size; ++peer) {
|
||||
int conn = accept(sock, nullptr, nullptr);
|
||||
if (conn < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] accept() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
sendAll(conn, &id, sizeof(id));
|
||||
close(conn);
|
||||
}
|
||||
close(sock);
|
||||
|
||||
} else {
|
||||
// Here just wanted to make show that rank 0 has enough time to bind
|
||||
// so we will retry to connect until max attempts
|
||||
|
||||
int sock = socket(AF_INET, SOCK_STREAM, 0);
|
||||
if (sock < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] socket() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
hostent* he = gethostbyname(host.c_str());
|
||||
if (!he) {
|
||||
throw std::runtime_error("[nccl] lookup failed for host: " + host);
|
||||
}
|
||||
sockaddr_in serv = {};
|
||||
serv.sin_family = AF_INET;
|
||||
memcpy(&serv.sin_addr, he->h_addr_list[0], he->h_length);
|
||||
serv.sin_port = htons(port);
|
||||
|
||||
const int max_retries = 30;
|
||||
int attempt = 0;
|
||||
bool connected = false;
|
||||
|
||||
for (attempt = 0; attempt < max_retries; ++attempt) {
|
||||
if (connect(sock, reinterpret_cast<sockaddr*>(&serv), sizeof(serv)) ==
|
||||
0) {
|
||||
connected = true;
|
||||
std::cout << "[Rank " << rank << "] Connected successfully on attempt "
|
||||
<< attempt + 1 << std::endl;
|
||||
break;
|
||||
}
|
||||
if (errno != ECONNREFUSED) {
|
||||
break;
|
||||
}
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(500));
|
||||
}
|
||||
|
||||
if (!connected) {
|
||||
std::ostringstream msg;
|
||||
msg << "[Rank " << rank << "] connect() failed after " << attempt
|
||||
<< " retries: " << strerror(errno);
|
||||
close(sock);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
recvAll(sock, &id, sizeof(id));
|
||||
close(sock);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct type_identity {
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <typename F>
|
||||
void dispatch_dtype(const array& arr, F&& f) {
|
||||
switch (arr.dtype()) {
|
||||
case bool_:
|
||||
throw std::invalid_argument("[nccl] Boolean arrays not supported");
|
||||
case int8:
|
||||
f(type_identity<int8_t>{}, ncclChar);
|
||||
break;
|
||||
case uint8:
|
||||
f(type_identity<uint8_t>{}, ncclUint8);
|
||||
break;
|
||||
case int32:
|
||||
f(type_identity<int32_t>{}, ncclInt);
|
||||
break;
|
||||
case uint32:
|
||||
f(type_identity<uint32_t>{}, ncclUint32);
|
||||
break;
|
||||
case int64:
|
||||
f(type_identity<int64_t>{}, ncclInt64);
|
||||
break;
|
||||
case uint64:
|
||||
f(type_identity<uint64_t>{}, ncclUint64);
|
||||
break;
|
||||
case float16:
|
||||
f(type_identity<float16_t>{}, ncclHalf);
|
||||
break;
|
||||
case bfloat16:
|
||||
f(type_identity<bfloat16_t>{}, ncclBfloat16);
|
||||
break;
|
||||
case float32:
|
||||
f(type_identity<float>{}, ncclFloat);
|
||||
break;
|
||||
case float64:
|
||||
f(type_identity<double>{}, ncclDouble);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("[nccl] Unknown or unsupported dtype");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
using GroupImpl = mlx::core::distributed::detail::GroupImpl;
|
||||
class NCCLGroup : public GroupImpl {
|
||||
public:
|
||||
NCCLGroup(int worldRank, int worldSize, const std::string initMethod)
|
||||
: rank_(worldRank),
|
||||
size_(worldSize),
|
||||
comm_(nullptr),
|
||||
initMethod_(initMethod) {
|
||||
if (initialized_)
|
||||
return;
|
||||
int ndev;
|
||||
CHECK_CUDA(cudaGetDeviceCount(&ndev));
|
||||
CHECK_CUDA(cudaSetDevice(rank_ % ndev));
|
||||
detail::bootstrap_unique_id(uniqueId_, rank_, size_, initMethod_);
|
||||
CHECK_NCCL(ncclCommInitRank(&comm_, size_, uniqueId_, rank_));
|
||||
initialized_ = true;
|
||||
}
|
||||
|
||||
~NCCLGroup() {
|
||||
ncclCommDestroy(comm_);
|
||||
ncclGroupEnd();
|
||||
initialized_ = false;
|
||||
}
|
||||
|
||||
int rank() override {
|
||||
return rank_;
|
||||
}
|
||||
|
||||
int size() override {
|
||||
return size_;
|
||||
}
|
||||
|
||||
void all_sum(const array& input, array& output, Stream stream) override {
|
||||
detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) {
|
||||
using T = typename decltype(type_tag)::type;
|
||||
all_reduce_impl<T>(
|
||||
input,
|
||||
output,
|
||||
stream,
|
||||
dt,
|
||||
ncclSum);
|
||||
});
|
||||
}
|
||||
|
||||
virtual std::shared_ptr<GroupImpl> split(int color, int key = -1) override {
|
||||
throw std::runtime_error("[nccl] Group split not supported.");
|
||||
}
|
||||
|
||||
void all_gather(const array& input, array& output, Stream stream) override {
|
||||
detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) {
|
||||
auto& encoder = cu::get_command_encoder(stream);
|
||||
|
||||
using T = typename decltype(type_tag)::type;
|
||||
CHECK_NCCL(ncclAllGather(
|
||||
input.data<T>(),
|
||||
output.data<T>(),
|
||||
input.size(),
|
||||
dt,
|
||||
comm_,
|
||||
encoder.stream()));
|
||||
});
|
||||
}
|
||||
|
||||
void send(const array& input, int dst, Stream stream) override {
|
||||
detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) {
|
||||
auto& encoder = cu::get_command_encoder(stream);
|
||||
|
||||
using T = typename decltype(type_tag)::type;
|
||||
CHECK_NCCL(ncclSend(
|
||||
input.data<T>(),
|
||||
input.size(),
|
||||
dt,
|
||||
dst,
|
||||
comm_,
|
||||
encoder.stream()));
|
||||
});
|
||||
}
|
||||
|
||||
void recv(array& output, int src, Stream stream) override {
|
||||
detail::dispatch_dtype(output, [&](auto type_tag, ncclDataType_t dt) {
|
||||
using T = typename decltype(type_tag)::type;
|
||||
auto& encoder = cu::get_command_encoder(stream);
|
||||
|
||||
CHECK_NCCL(ncclRecv(
|
||||
output.data<T>(),
|
||||
output.size(),
|
||||
dt,
|
||||
src,
|
||||
comm_,
|
||||
encoder.stream()));
|
||||
});
|
||||
}
|
||||
|
||||
void all_max(const array& input, array& output, Stream stream) override {
|
||||
detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) {
|
||||
using T = typename decltype(type_tag)::type;
|
||||
all_reduce_impl<T>(input, output, stream, dt, ncclMax);
|
||||
});
|
||||
}
|
||||
|
||||
void all_min(const array& input, array& output, Stream stream) override {
|
||||
detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) {
|
||||
using T = typename decltype(type_tag)::type;
|
||||
all_reduce_impl<T>(input, output, stream, dt, ncclMin);
|
||||
});
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void all_reduce_impl(
|
||||
const array& input,
|
||||
array& output,
|
||||
Stream stream,
|
||||
ncclDataType_t dt,
|
||||
ncclRedOp_t op) {
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream);
|
||||
|
||||
CHECK_NCCL(ncclAllReduce(
|
||||
input.data<T>(),
|
||||
output.data<T>(),
|
||||
input.size(),
|
||||
dt,
|
||||
op,
|
||||
comm_,
|
||||
encoder.stream()
|
||||
));
|
||||
|
||||
}
|
||||
|
||||
int rank_, size_;
|
||||
std::string initMethod_;
|
||||
ncclUniqueId uniqueId_;
|
||||
ncclComm_t comm_;
|
||||
bool initialized_ = false;
|
||||
};
|
||||
|
||||
bool is_available() {
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
static std::string get_env_var_or_throw(const char* env_var_name) {
|
||||
const char* value = std::getenv(env_var_name);
|
||||
if (value == nullptr) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] Required environment variable '" << env_var_name
|
||||
<< "' is not set. "
|
||||
<< "Please set it before initializing the distributed backend.";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
return std::string(value);
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
std::shared_ptr<GroupImpl> init(bool strict /* = false */) {
|
||||
std::string host = detail::get_env_var_or_throw("NCCL_HOST_IP");
|
||||
std::string port = detail::get_env_var_or_throw("NCCL_PORT");
|
||||
std::string rank_str = detail::get_env_var_or_throw("MLX_RANK");
|
||||
std::string n_nodes_str = detail::get_env_var_or_throw("MLX_WORLD_SIZE");
|
||||
|
||||
int rank = std::stoi(rank_str);
|
||||
int n_nodes = std::stoi(n_nodes_str);
|
||||
std::string init_method = "tcp://" + host + ":" + port;
|
||||
|
||||
return std::make_shared<NCCLGroup>(rank, n_nodes, init_method);
|
||||
}
|
||||
} // namespace mlx::core::distributed::nccl
|
||||
12
mlx/distributed/nccl/nccl.h
Normal file
12
mlx/distributed/nccl/nccl.h
Normal file
@@ -0,0 +1,12 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/distributed/distributed.h"
|
||||
|
||||
namespace mlx::core::distributed::nccl {
|
||||
|
||||
using GroupImpl = mlx::core::distributed::detail::GroupImpl;
|
||||
|
||||
bool is_available();
|
||||
std::shared_ptr<GroupImpl> init(bool strict = false);
|
||||
|
||||
} // namespace mlx::core::distributed::nccl
|
||||
20
mlx/distributed/nccl/no_nccl.cpp
Normal file
20
mlx/distributed/nccl/no_nccl.cpp
Normal file
@@ -0,0 +1,20 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/distributed/nccl/nccl.h"
|
||||
|
||||
namespace mlx::core::distributed::nccl {
|
||||
|
||||
using GroupImpl = mlx::core::distributed::detail::GroupImpl;
|
||||
|
||||
bool is_available() {
|
||||
return false;
|
||||
}
|
||||
|
||||
std::shared_ptr<GroupImpl> init(bool strict /* = false */) {
|
||||
if (strict) {
|
||||
throw std::runtime_error("Cannot initialize nccl distributed backend.");
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
} // namespace mlx::core::distributed::nccl
|
||||
@@ -31,8 +31,7 @@ array all_sum(
|
||||
return array(
|
||||
x.shape(),
|
||||
x.dtype(),
|
||||
std::make_shared<AllReduce>(
|
||||
to_stream(s, Device::cpu), group, AllReduce::Sum),
|
||||
std::make_shared<AllReduce>(to_stream(s), group, AllReduce::Sum),
|
||||
{x});
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user