diff --git a/python/mlx/nn/layers/convolution.py b/python/mlx/nn/layers/convolution.py index c6928e188..6e1c9780e 100644 --- a/python/mlx/nn/layers/convolution.py +++ b/python/mlx/nn/layers/convolution.py @@ -23,6 +23,7 @@ class Conv1d(Module): Default: 1. padding (int, optional): How many positions to 0-pad the input with. Default: 0. + dilation (int, optional): The dilation of the convolution. bias (bool, optional): If ``True`` add a learnable bias to the output. Default: ``True`` """ @@ -34,6 +35,7 @@ class Conv1d(Module): kernel_size: int, stride: int = 1, padding: int = 0, + dilation: int = 1, bias: bool = True, ): super().__init__() @@ -48,17 +50,19 @@ class Conv1d(Module): self.bias = mx.zeros((out_channels,)) self.padding = padding + self.dilation = dilation self.stride = stride def _extra_repr(self): return ( f"{self.weight.shape[-1]}, {self.weight.shape[0]}, " f"kernel_size={self.weight.shape[1]}, stride={self.stride}, " - f"padding={self.padding}, bias={'bias' in self}" + f"padding={self.padding}, dilation={self.dilation}, " + f"bias={'bias' in self}" ) def __call__(self, x): - y = mx.conv1d(x, self.weight, self.stride, self.padding) + y = mx.conv1d(x, self.weight, self.stride, self.padding, self.dilation) if "bias" in self: y = y + self.bias return y @@ -81,6 +85,7 @@ class Conv2d(Module): applying the filter. Default: 1. padding (int or tuple, optional): How many positions to 0-pad the input with. Default: 0. + dilation (int or tuple, optional): The dilation of the convolution. bias (bool, optional): If ``True`` add a learnable bias to the output. Default: ``True`` """ @@ -92,6 +97,7 @@ class Conv2d(Module): kernel_size: Union[int, tuple], stride: Union[int, tuple] = 1, padding: Union[int, tuple] = 0, + dilation: Union[int, tuple] = 1, bias: bool = True, ): super().__init__() @@ -111,16 +117,18 @@ class Conv2d(Module): self.padding = padding self.stride = stride + self.dilation = dilation def _extra_repr(self): return ( f"{self.weight.shape[-1]}, {self.weight.shape[0]}, " f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, " - f"padding={self.padding}, bias={'bias' in self}" + f"padding={self.padding}, dilation={self.dilation}, " + f"bias={'bias' in self}" ) def __call__(self, x): - y = mx.conv2d(x, self.weight, self.stride, self.padding) + y = mx.conv2d(x, self.weight, self.stride, self.padding, self.dilation) if "bias" in self: y = y + self.bias return y diff --git a/python/tests/test_nn.py b/python/tests/test_nn.py index 99154d3f6..678acfd5b 100644 --- a/python/tests/test_nn.py +++ b/python/tests/test_nn.py @@ -586,6 +586,13 @@ class TestLayers(mlx_tests.MLXTestCase): self.assertEqual(y.shape, (N, (L - ks + 1) // 2, C_out)) self.assertTrue("bias" in c.parameters()) + dil = 2 + c = nn.Conv1d( + in_channels=C_in, out_channels=C_out, kernel_size=ks, dilation=dil + ) + y = c(x) + self.assertEqual(y.shape, (N, L - (ks - 1) * dil, C_out)) + c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False) self.assertTrue("bias" not in c.parameters()) @@ -632,6 +639,11 @@ class TestLayers(mlx_tests.MLXTestCase): self.assertEqual(y.shape, (4, 3, 3, 8)) self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4) + c = nn.Conv2d(3, 8, 3, dilation=2) + y = c(x) + self.assertEqual(y.shape, (4, 4, 4, 8)) + self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4) + def test_sequential(self): x = mx.ones((10, 2)) m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1))