mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-27 20:07:59 +08:00
Dilation for convolutional layers (#766)
* add dilation parameter to Conv1d layer * space here too * add conv1d dilation test * add dilation parameter for Conv2d layer * conv2d dilation test
This commit is contained in:
parent
bc06cb9ff6
commit
6a665ea6ed
@ -23,6 +23,7 @@ class Conv1d(Module):
|
|||||||
Default: 1.
|
Default: 1.
|
||||||
padding (int, optional): How many positions to 0-pad the input with.
|
padding (int, optional): How many positions to 0-pad the input with.
|
||||||
Default: 0.
|
Default: 0.
|
||||||
|
dilation (int, optional): The dilation of the convolution.
|
||||||
bias (bool, optional): If ``True`` add a learnable bias to the output.
|
bias (bool, optional): If ``True`` add a learnable bias to the output.
|
||||||
Default: ``True``
|
Default: ``True``
|
||||||
"""
|
"""
|
||||||
@ -34,6 +35,7 @@ class Conv1d(Module):
|
|||||||
kernel_size: int,
|
kernel_size: int,
|
||||||
stride: int = 1,
|
stride: int = 1,
|
||||||
padding: int = 0,
|
padding: int = 0,
|
||||||
|
dilation: int = 1,
|
||||||
bias: bool = True,
|
bias: bool = True,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -48,17 +50,19 @@ class Conv1d(Module):
|
|||||||
self.bias = mx.zeros((out_channels,))
|
self.bias = mx.zeros((out_channels,))
|
||||||
|
|
||||||
self.padding = padding
|
self.padding = padding
|
||||||
|
self.dilation = dilation
|
||||||
self.stride = stride
|
self.stride = stride
|
||||||
|
|
||||||
def _extra_repr(self):
|
def _extra_repr(self):
|
||||||
return (
|
return (
|
||||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||||
f"kernel_size={self.weight.shape[1]}, stride={self.stride}, "
|
f"kernel_size={self.weight.shape[1]}, stride={self.stride}, "
|
||||||
f"padding={self.padding}, bias={'bias' in self}"
|
f"padding={self.padding}, dilation={self.dilation}, "
|
||||||
|
f"bias={'bias' in self}"
|
||||||
)
|
)
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
y = mx.conv1d(x, self.weight, self.stride, self.padding)
|
y = mx.conv1d(x, self.weight, self.stride, self.padding, self.dilation)
|
||||||
if "bias" in self:
|
if "bias" in self:
|
||||||
y = y + self.bias
|
y = y + self.bias
|
||||||
return y
|
return y
|
||||||
@ -81,6 +85,7 @@ class Conv2d(Module):
|
|||||||
applying the filter. Default: 1.
|
applying the filter. Default: 1.
|
||||||
padding (int or tuple, optional): How many positions to 0-pad
|
padding (int or tuple, optional): How many positions to 0-pad
|
||||||
the input with. Default: 0.
|
the input with. Default: 0.
|
||||||
|
dilation (int or tuple, optional): The dilation of the convolution.
|
||||||
bias (bool, optional): If ``True`` add a learnable bias to the
|
bias (bool, optional): If ``True`` add a learnable bias to the
|
||||||
output. Default: ``True``
|
output. Default: ``True``
|
||||||
"""
|
"""
|
||||||
@ -92,6 +97,7 @@ class Conv2d(Module):
|
|||||||
kernel_size: Union[int, tuple],
|
kernel_size: Union[int, tuple],
|
||||||
stride: Union[int, tuple] = 1,
|
stride: Union[int, tuple] = 1,
|
||||||
padding: Union[int, tuple] = 0,
|
padding: Union[int, tuple] = 0,
|
||||||
|
dilation: Union[int, tuple] = 1,
|
||||||
bias: bool = True,
|
bias: bool = True,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -111,16 +117,18 @@ class Conv2d(Module):
|
|||||||
|
|
||||||
self.padding = padding
|
self.padding = padding
|
||||||
self.stride = stride
|
self.stride = stride
|
||||||
|
self.dilation = dilation
|
||||||
|
|
||||||
def _extra_repr(self):
|
def _extra_repr(self):
|
||||||
return (
|
return (
|
||||||
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
|
||||||
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
|
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
|
||||||
f"padding={self.padding}, bias={'bias' in self}"
|
f"padding={self.padding}, dilation={self.dilation}, "
|
||||||
|
f"bias={'bias' in self}"
|
||||||
)
|
)
|
||||||
|
|
||||||
def __call__(self, x):
|
def __call__(self, x):
|
||||||
y = mx.conv2d(x, self.weight, self.stride, self.padding)
|
y = mx.conv2d(x, self.weight, self.stride, self.padding, self.dilation)
|
||||||
if "bias" in self:
|
if "bias" in self:
|
||||||
y = y + self.bias
|
y = y + self.bias
|
||||||
return y
|
return y
|
||||||
|
@ -586,6 +586,13 @@ class TestLayers(mlx_tests.MLXTestCase):
|
|||||||
self.assertEqual(y.shape, (N, (L - ks + 1) // 2, C_out))
|
self.assertEqual(y.shape, (N, (L - ks + 1) // 2, C_out))
|
||||||
self.assertTrue("bias" in c.parameters())
|
self.assertTrue("bias" in c.parameters())
|
||||||
|
|
||||||
|
dil = 2
|
||||||
|
c = nn.Conv1d(
|
||||||
|
in_channels=C_in, out_channels=C_out, kernel_size=ks, dilation=dil
|
||||||
|
)
|
||||||
|
y = c(x)
|
||||||
|
self.assertEqual(y.shape, (N, L - (ks - 1) * dil, C_out))
|
||||||
|
|
||||||
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False)
|
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False)
|
||||||
self.assertTrue("bias" not in c.parameters())
|
self.assertTrue("bias" not in c.parameters())
|
||||||
|
|
||||||
@ -632,6 +639,11 @@ class TestLayers(mlx_tests.MLXTestCase):
|
|||||||
self.assertEqual(y.shape, (4, 3, 3, 8))
|
self.assertEqual(y.shape, (4, 3, 3, 8))
|
||||||
self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
|
self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
|
||||||
|
|
||||||
|
c = nn.Conv2d(3, 8, 3, dilation=2)
|
||||||
|
y = c(x)
|
||||||
|
self.assertEqual(y.shape, (4, 4, 4, 8))
|
||||||
|
self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
|
||||||
|
|
||||||
def test_sequential(self):
|
def test_sequential(self):
|
||||||
x = mx.ones((10, 2))
|
x = mx.ones((10, 2))
|
||||||
m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1))
|
m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1))
|
||||||
|
Loading…
Reference in New Issue
Block a user