mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
feat: add cross_product (#1252)
* feat: add cross_product * lint * python binding * refactor: Improve error message for cross_product function * refactor: more close to numpy cross product * refactor: improve error message for cross_product function * finish * fix acks * allow old numpy * doc --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
@@ -377,4 +377,32 @@ void init_linalg(nb::module_& parent_module) {
|
||||
Returns:
|
||||
array: ``aplus`` such that ``a @ aplus @ a = a``
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"cross",
|
||||
&cross,
|
||||
"a"_a,
|
||||
"b"_a,
|
||||
"axis"_a = -1,
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
nb::sig(
|
||||
"def cross(a: array, b: array, axis: int = -1, *, stream: Union[None, Stream, Device] = None) -> array"),
|
||||
R"pbdoc(
|
||||
Compute the cross product of two arrays along a specified axis.
|
||||
|
||||
The cross product is defined for arrays with size 2 or 3 in the
|
||||
specified axis. If the size is 2 then the third value is assumed
|
||||
to be zero.
|
||||
|
||||
Args:
|
||||
a (array): Input array.
|
||||
b (array): Input array.
|
||||
axis (int, optional): Axis along which to compute the cross
|
||||
product. Default: ``-1``.
|
||||
stream (Stream, optional): Stream or device. Defaults to ``None``
|
||||
in which case the default stream of the default device is used.
|
||||
|
||||
Returns:
|
||||
array: The cross product of ``a`` and ``b`` along the specified axis.
|
||||
)pbdoc");
|
||||
}
|
||||
|
||||
@@ -220,6 +220,54 @@ class TestLinalg(mlx_tests.MLXTestCase):
|
||||
for M, M_inv in zip(AB, AB_inv):
|
||||
self.assertTrue(mx.allclose(M @ M_inv, mx.eye(N), atol=1e-4))
|
||||
|
||||
def test_cross_product(self):
|
||||
a = mx.array([1.0, 2.0, 3.0])
|
||||
b = mx.array([4.0, 5.0, 6.0])
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with negative values
|
||||
a = mx.array([-1.0, -2.0, -3.0])
|
||||
b = mx.array([4.0, -5.0, 6.0])
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with integer values
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([4, 5, 6])
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with 2D arrays and axis parameter
|
||||
a = mx.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
|
||||
b = mx.array([[4.0, 5.0, 6.0], [1.0, 2.0, 3.0]])
|
||||
result = mx.linalg.cross(a, b, axis=1)
|
||||
expected = np.cross(a, b, axis=1)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with broadcast
|
||||
a = mx.random.uniform(shape=(2, 1, 3))
|
||||
b = mx.random.uniform(shape=(1, 2, 3))
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Type promotion
|
||||
a = mx.array([1.0, 2.0, 3.0])
|
||||
b = mx.array([4, 5, 6])
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with incorrect vector size (should raise an exception)
|
||||
a = mx.array([1.0])
|
||||
b = mx.array([4.0])
|
||||
with self.assertRaises(ValueError):
|
||||
mx.linalg.cross(a, b)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
||||
Reference in New Issue
Block a user