mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-11 14:34:37 +08:00
feat: add cross_product (#1252)
* feat: add cross_product * lint * python binding * refactor: Improve error message for cross_product function * refactor: more close to numpy cross product * refactor: improve error message for cross_product function * finish * fix acks * allow old numpy * doc --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
@@ -220,6 +220,54 @@ class TestLinalg(mlx_tests.MLXTestCase):
|
||||
for M, M_inv in zip(AB, AB_inv):
|
||||
self.assertTrue(mx.allclose(M @ M_inv, mx.eye(N), atol=1e-4))
|
||||
|
||||
def test_cross_product(self):
|
||||
a = mx.array([1.0, 2.0, 3.0])
|
||||
b = mx.array([4.0, 5.0, 6.0])
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with negative values
|
||||
a = mx.array([-1.0, -2.0, -3.0])
|
||||
b = mx.array([4.0, -5.0, 6.0])
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with integer values
|
||||
a = mx.array([1, 2, 3])
|
||||
b = mx.array([4, 5, 6])
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with 2D arrays and axis parameter
|
||||
a = mx.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
|
||||
b = mx.array([[4.0, 5.0, 6.0], [1.0, 2.0, 3.0]])
|
||||
result = mx.linalg.cross(a, b, axis=1)
|
||||
expected = np.cross(a, b, axis=1)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with broadcast
|
||||
a = mx.random.uniform(shape=(2, 1, 3))
|
||||
b = mx.random.uniform(shape=(1, 2, 3))
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Type promotion
|
||||
a = mx.array([1.0, 2.0, 3.0])
|
||||
b = mx.array([4, 5, 6])
|
||||
result = mx.linalg.cross(a, b)
|
||||
expected = np.cross(a, b)
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Test with incorrect vector size (should raise an exception)
|
||||
a = mx.array([1.0])
|
||||
b = mx.array([4.0])
|
||||
with self.assertRaises(ValueError):
|
||||
mx.linalg.cross(a, b)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Reference in New Issue
Block a user