This commit is contained in:
John Mai 2025-06-17 08:18:57 +08:00 committed by GitHub
commit 6b45493737
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 58 additions and 0 deletions

View File

@ -224,6 +224,13 @@ def relu6(x):
mx.eval(y) mx.eval(y)
def relu_squared(x):
y = x
for i in range(100):
y = nn.relu_squared(y)
mx.eval(y)
def softplus(x): def softplus(x):
y = x y = x
for i in range(100): for i in range(100):
@ -458,6 +465,9 @@ if __name__ == "__main__":
elif args.benchmark == "relu6": elif args.benchmark == "relu6":
print(bench(relu6, x)) print(bench(relu6, x))
elif args.benchmark == "relu_squared":
print(bench(relu_squared, x))
elif args.benchmark == "celu": elif args.benchmark == "celu":
print(bench(celu, x)) print(bench(celu, x))

View File

@ -157,6 +157,15 @@ def relu6(x):
sync_if_needed(x) sync_if_needed(x)
@torch.no_grad()
def relu_squared(x):
y = x
for i in range(100):
y = torch.nn.functional.relu(y)
y = torch.square(y)
sync_if_needed(x)
@torch.no_grad() @torch.no_grad()
def softplus(x): def softplus(x):
y = x y = x
@ -407,6 +416,9 @@ if __name__ == "__main__":
elif args.benchmark == "relu6": elif args.benchmark == "relu6":
print(bench(relu6, x)) print(bench(relu6, x))
elif args.benchmark == "relu_squared":
print(bench(relu_squared, x))
elif args.benchmark == "softplus": elif args.benchmark == "softplus":
print(bench(softplus, x)) print(bench(softplus, x))

View File

@ -207,6 +207,8 @@ if __name__ == "__main__":
compare_filtered("elu --size 32x16x1024 --cpu") compare_filtered("elu --size 32x16x1024 --cpu")
compare_filtered("relu6 --size 32x16x1024") compare_filtered("relu6 --size 32x16x1024")
compare_filtered("relu6 --size 32x16x1024 --cpu") compare_filtered("relu6 --size 32x16x1024 --cpu")
compare_filtered("relu_squared --size 32x16x1024")
compare_filtered("relu_squared --size 32x16x1024 --cpu")
compare_filtered("softplus --size 32x16x1024") compare_filtered("softplus --size 32x16x1024")
compare_filtered("softplus --size 32x16x1024 --cpu") compare_filtered("softplus --size 32x16x1024 --cpu")
compare_filtered("celu --size 32x16x1024") compare_filtered("celu --size 32x16x1024")

View File

@ -28,6 +28,7 @@ simple functions.
prelu prelu
relu relu
relu6 relu6
relu_squared
selu selu
sigmoid sigmoid
silu silu

View File

@ -51,6 +51,7 @@ Layers
RMSNorm RMSNorm
ReLU ReLU
ReLU6 ReLU6
ReLUSquared
RNN RNN
RoPE RoPE
SELU SELU

View File

@ -16,6 +16,7 @@ from mlx.nn.layers.activations import (
PReLU, PReLU,
ReLU, ReLU,
ReLU6, ReLU6,
ReLUSquared,
Sigmoid, Sigmoid,
SiLU, SiLU,
Softmax, Softmax,
@ -41,6 +42,7 @@ from mlx.nn.layers.activations import (
prelu, prelu,
relu, relu,
relu6, relu6,
relu_squared,
selu, selu,
sigmoid, sigmoid,
silu, silu,

View File

@ -71,6 +71,17 @@ def relu6(x):
return mx.minimum(mx.maximum(x, 0), 6.0) return mx.minimum(mx.maximum(x, 0), 6.0)
@partial(mx.compile, shapeless=True)
def relu_squared(x):
r"""Applies the Rectified Linear Unit squared.
Applies :math:`\max(x, 0)^2` element wise.
Reference: https://arxiv.org/abs/2109.08668v2
"""
return relu(x).square()
@partial(mx.compile, shapeless=True) @partial(mx.compile, shapeless=True)
def softmax(x, axis=-1): def softmax(x, axis=-1):
r"""Applies the Softmax function. r"""Applies the Softmax function.
@ -420,6 +431,18 @@ class ReLU6(Module):
""" """
@_make_activation_module(relu_squared)
class ReLUSquared(Module):
r"""Applies the Rectified Linear Unit squared.
Applies :math:`\max(x, 0)^2` element wise.
Reference: https://arxiv.org/abs/2109.08668v2
See :func:`relu_squared` for the functional equivalent.
"""
@_make_activation_module(softmax) @_make_activation_module(softmax)
class Softmax(Module): class Softmax(Module):
r"""Applies the Softmax function. r"""Applies the Softmax function.

View File

@ -855,6 +855,13 @@ class TestLayers(mlx_tests.MLXTestCase):
self.assertEqual(y.shape, (3,)) self.assertEqual(y.shape, (3,))
self.assertEqual(y.dtype, mx.float32) self.assertEqual(y.dtype, mx.float32)
def test_relu_squared(self):
x = mx.array([-1.0, 0.0, 1.0, 2.0, 3.0])
y = nn.relu_squared(x)
self.assertTrue(mx.array_equal(y, mx.array([0.0, 0.0, 1.0, 4.0, 9.0])))
self.assertEqual(y.shape, (5,))
self.assertEqual(y.dtype, mx.float32)
def test_leaky_relu(self): def test_leaky_relu(self):
x = mx.array([1.0, -1.0, 0.0]) x = mx.array([1.0, -1.0, 0.0])
y = nn.leaky_relu(x) y = nn.leaky_relu(x)