mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-21 20:46:46 +08:00
cleanup stats test
This commit is contained in:
parent
865e53fcab
commit
6b4f49fe1c
@ -374,7 +374,7 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
]
|
||||
)
|
||||
self.assertTrue(x.shape == y.shape)
|
||||
self.assertTrue(np.allclose(y, expected_y, atol=1e-5))
|
||||
self.assertTrue(mx.allclose(y, expected_y, atol=1e-5))
|
||||
|
||||
# test with 3D input
|
||||
mx.random.seed(42)
|
||||
@ -418,58 +418,44 @@ class TestNN(mlx_tests.MLXTestCase):
|
||||
y = bn(x)
|
||||
|
||||
def test_batch_norm_stats(self):
|
||||
batch_size = 4
|
||||
num_features = 32
|
||||
num_channels = 32
|
||||
h = 28
|
||||
w = 28
|
||||
num_iterations = 100
|
||||
batch_size = 2
|
||||
num_features = 4
|
||||
h = 3
|
||||
w = 3
|
||||
momentum = 0.1
|
||||
|
||||
batch_norm = nn.BatchNorm(num_features)
|
||||
|
||||
batch_norm.train()
|
||||
running_mean = np.array(batch_norm._running_mean.tolist())
|
||||
running_var = np.array(batch_norm._running_var.tolist())
|
||||
running_mean = np.array(batch_norm._running_mean)
|
||||
running_var = np.array(batch_norm._running_var)
|
||||
|
||||
data = mx.random.normal((batch_size * num_features,)).reshape(
|
||||
(batch_size, num_features)
|
||||
)
|
||||
data = mx.random.normal((batch_size, num_features))
|
||||
|
||||
for _ in range(num_iterations):
|
||||
normalized_data = batch_norm(data)
|
||||
means = np.mean(data.tolist(), axis=0)
|
||||
variances = np.var(data.tolist(), axis=0)
|
||||
running_mean = (1 - momentum) * running_mean + momentum * means
|
||||
running_var = (1 - momentum) * running_var + momentum * variances
|
||||
assert np.allclose(batch_norm._running_mean, running_mean, atol=1e-5)
|
||||
assert np.allclose(batch_norm._running_var, running_var, atol=1e-5)
|
||||
data = normalized_data
|
||||
normalized_data = batch_norm(data)
|
||||
np_data = np.array(data)
|
||||
means = np.mean(np_data, axis=0)
|
||||
variances = np.var(np_data, axis=0)
|
||||
running_mean = (1 - momentum) * running_mean + momentum * means
|
||||
running_var = (1 - momentum) * running_var + momentum * variances
|
||||
self.assertTrue(np.allclose(batch_norm._running_mean, running_mean, atol=1e-5))
|
||||
self.assertTrue(np.allclose(batch_norm._running_var, running_var, atol=1e-5))
|
||||
|
||||
batch_norm = nn.BatchNorm(num_channels)
|
||||
batch_norm = nn.BatchNorm(num_features)
|
||||
|
||||
batch_norm.train()
|
||||
running_mean = np.array(batch_norm._running_mean.tolist()).reshape(
|
||||
1, 1, 1, num_channels
|
||||
)
|
||||
running_var = np.array(batch_norm._running_var.tolist()).reshape(
|
||||
1, 1, 1, num_channels
|
||||
)
|
||||
data = mx.random.normal((batch_size, h, w, num_channels))
|
||||
running_mean = np.array(batch_norm._running_mean)
|
||||
running_var = np.array(batch_norm._running_var)
|
||||
data = mx.random.normal((batch_size, h, w, num_features))
|
||||
|
||||
for _ in range(num_iterations):
|
||||
normalized_data = batch_norm(data)
|
||||
means = np.mean(data.tolist(), axis=(0, 1, 2)).reshape(
|
||||
1, 1, 1, num_channels
|
||||
)
|
||||
variances = np.var(data.tolist(), axis=(0, 1, 2)).reshape(
|
||||
1, 1, 1, num_channels
|
||||
)
|
||||
running_mean = (1 - momentum) * running_mean + momentum * means
|
||||
running_var = (1 - momentum) * running_var + momentum * variances
|
||||
assert np.allclose(batch_norm._running_mean, running_mean, atol=1e-5)
|
||||
assert np.allclose(batch_norm._running_var, running_var, atol=1e-5)
|
||||
data = normalized_data
|
||||
normalized_data = batch_norm(data)
|
||||
np_data = np.array(data)
|
||||
means = np.mean(np_data, axis=(0, 1, 2))
|
||||
variances = np.var(np_data, axis=(0, 1, 2))
|
||||
running_mean = (1 - momentum) * running_mean + momentum * means
|
||||
running_var = (1 - momentum) * running_var + momentum * variances
|
||||
self.assertTrue(np.allclose(batch_norm._running_mean, running_mean, atol=1e-5))
|
||||
self.assertTrue(np.allclose(batch_norm._running_var, running_var, atol=1e-5))
|
||||
|
||||
def test_conv1d(self):
|
||||
N = 5
|
||||
|
Loading…
Reference in New Issue
Block a user