Fixed mma and working dequant

This commit is contained in:
Angelos Katharopoulos
2025-07-21 04:39:27 -07:00
parent a64cc02a0c
commit 6c60bd1cbf

View File

@@ -90,29 +90,29 @@ struct Tile16x16 {
} else if constexpr (sizeof(T2) == 8) {
asm volatile("st.shared.b64 [%1], %0;\n"
:
: "r"(*(uint32_t*)&(values[0])), "r"(a));
: "r"(*(uint64_t*)&(values[0])), "r"(a));
asm volatile("st.shared.b64 [%1], %0;\n"
:
: "r"(*(uint32_t*)&(values[2])), "r"(b));
: "r"(*(uint64_t*)&(values[2])), "r"(b));
asm volatile("st.shared.b64 [%1], %0;\n"
:
: "r"(*(uint32_t*)&(values[1])), "r"(c));
: "r"(*(uint64_t*)&(values[1])), "r"(c));
asm volatile("st.shared.b64 [%1], %0;\n"
:
: "r"(*(uint32_t*)&(values[3])), "r"(d));
: "r"(*(uint64_t*)&(values[3])), "r"(d));
} else if constexpr (sizeof(T2) == 16) {
asm volatile("st.shared.b128 [%1], %0;\n"
:
: "r"(*(uint32_t*)&(values[0])), "r"(a));
: "r"(*(__int128*)&(values[0])), "r"(a));
asm volatile("st.shared.b128 [%1], %0;\n"
:
: "r"(*(uint32_t*)&(values[2])), "r"(b));
: "r"(*(__int128*)&(values[2])), "r"(b));
asm volatile("st.shared.b128 [%1], %0;\n"
:
: "r"(*(uint32_t*)&(values[1])), "r"(c));
: "r"(*(__int128*)&(values[1])), "r"(c));
asm volatile("st.shared.b128 [%1], %0;\n"
:
: "r"(*(uint32_t*)&(values[3])), "r"(d));
: "r"(*(__int128*)&(values[3])), "r"(d));
}
}
}
@@ -143,17 +143,17 @@ struct Tile16x16 {
}
};
template <typename T, int R, int C>
template <typename T, int ROWS, int COLS>
struct __align__(16) SharedTile {
static constexpr int TILES_R = R / 16;
static constexpr int TILES_C = C / 16;
static constexpr int NUM_ELEMENTS = R * C;
static constexpr int TILES_R = ROWS / 16;
static constexpr int TILES_C = COLS / 16;
static constexpr int NUM_ELEMENTS = ROWS * COLS;
static constexpr int swizzle_bytes =
(sizeof(T) == 2 ? (TILES_C % 4 == 0 ? 128 : (TILES_C % 2 == 0 ? 64 : 32))
: (sizeof(T) == 4 ? (TILES_C % 2 == 0 ? 128 : 64) : 0));
T data[R * C];
T data[ROWS * COLS];
__device__ static inline T* idx(T* ptr, int2 coord) {
if constexpr (swizzle_bytes > 0) {
@@ -163,12 +163,12 @@ struct __align__(16) SharedTile {
const int outer_idx = c / subtile_cols;
const uint64_t addr =
(uint64_t)(&ptr
[outer_idx * R * subtile_cols + r * subtile_cols +
[outer_idx * ROWS * subtile_cols + r * subtile_cols +
c % subtile_cols]);
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
return (T*)(addr ^ swizzle);
} else {
return ptr + coord.y * C + coord.x;
return ptr + coord.y * COLS + coord.x;
}
}
@@ -180,33 +180,59 @@ struct __align__(16) SharedTile {
const int outer_idx = c / subtile_cols;
const uint32_t addr = ptr +
sizeof(T) *
(outer_idx * R * subtile_cols + r * subtile_cols +
(outer_idx * ROWS * subtile_cols + r * subtile_cols +
c % subtile_cols);
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
return (addr ^ swizzle);
} else {
return ptr + sizeof(T) * (coord.y * C + coord.x);
return ptr + sizeof(T) * (coord.y * COLS + coord.x);
}
}
__device__ inline T& operator[](int2 coord) {
return *idx(&data[0], coord);
}
__device__ inline void store(float4& v, int2 coord) {
*(reinterpret_cast<float4*>(idx(data, coord))) = v;
}
__device__ inline void store(float2& v, int2 coord) {
*(reinterpret_cast<float2*>(idx(data, coord))) = v;
}
__device__ inline void store(float& v, int2 coord) {
*(reinterpret_cast<float*>(idx(data, coord))) = v;
}
template <int N>
__device__ inline void store(T (&v)[N], int2 coord) {
if constexpr (sizeof(T) * N == 4) {
store(*(reinterpret_cast<float*>(&v[0])), coord);
} else if constexpr (sizeof(T) * N == 8) {
store(*(reinterpret_cast<float2*>(&v[0])), coord);
} else if constexpr (sizeof(T) * N == 16) {
store(*(reinterpret_cast<float4*>(&v[0])), coord);
} else {
#pragma unroll
for (int i = 0; i < N; i++) {
*idx(data, {coord.x, coord.y + i}) = v[i];
}
}
}
template <int NUM_WARPS>
__device__ inline void load(const T* x, int N) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
constexpr int NUM_LOADS = NUM_ELEMENTS / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = C / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_ROW = COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
uint32_t data_ptr =
static_cast<uint32_t>(__cvta_generic_to_shared(&data[0]));
x += row * N + col * ELEMENTS_PER_LOAD;
#pragma unroll
@@ -216,6 +242,42 @@ struct __align__(16) SharedTile {
store(tmp, {row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD});
}
}
template <int NUM_WARPS, int group_size, int bits>
__device__ inline void
load_quantized(const uint8_t* x, const T* scales, const T* biases, int N) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD =
sizeof(uint32_t) * get_pack_factor<bits>();
constexpr int NUM_LOADS = NUM_ELEMENTS / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
constexpr int MASK = (1 << bits) - 1;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
const int Nx = N / get_pack_factor<bits>();
const int Ng = N / group_size;
x += row * Nx + col * (ELEMENTS_PER_LOAD / get_pack_factor<bits>());
scales += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
biases += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
#pragma unroll
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
T vs[ELEMENTS_PER_LOAD];
uint32_t w = *reinterpret_cast<const uint32_t*>(x + i * STEP_ROWS * Nx);
T s = scales[i * STEP_ROWS * Ng];
T b = biases[i * STEP_ROWS * Ng];
#pragma unroll
for (int j = 0; j < ELEMENTS_PER_LOAD; j++) {
vs[j] = static_cast<T>((w >> (j * bits)) & MASK) * s + b;
}
store(vs, {row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD});
}
}
};
template <typename TileAccum, typename Tile>
@@ -312,40 +374,53 @@ __global__ void qmm(
Tile16x16<T> A[WARP_M];
Tile16x16<T> B[WARP_N];
x += blockIdx.y * BM * K;
w += blockIdx.x * BN * K / get_pack_factor<bits>();
scales += blockIdx.x * BN * K / group_size;
biases += blockIdx.x * BN * K / group_size;
y += blockIdx.y * BM * N + blockIdx.x * BN;
#pragma unroll
for (int i = 0; i < WARP_M * WARP_N; i++) {
C[i].clear();
}
xs.load<NUM_WARPS>(x, K);
ws.load<NUM_WARPS>(x + BM * K, K);
__syncthreads();
uint32_t base_addr_xs = __cvta_generic_to_shared(&xs.data[0]);
uint32_t base_addr_ws = __cvta_generic_to_shared(&ws.data[0]);
#pragma unroll
for (int k = 0; k < WARP_K; k++) {
#pragma unroll
for (int i = 0; i < WARP_M; i++) {
A[i].load(xs.idx(
base_addr_xs,
{offset_m + i * 16 + laneid % 16, k * 16 + laneid / 16 * 8}));
}
#pragma unroll
for (int i = 0; i < WARP_N; i++) {
B[i].load(ws.idx(
base_addr_ws,
{offset_n + i * 16 + laneid % 16, k * 16 + laneid / 16 * 8}));
}
for (int k_block = 0; k_block < K; k_block += BK) {
xs.load<NUM_WARPS>(x + k_block, K);
ws.load_quantized<NUM_WARPS, group_size, bits>(
w + k_block / get_pack_factor<bits>(),
scales + k_block / group_size,
biases + k_block / group_size,
K);
__syncthreads();
#pragma unroll
for (int i = 0; i < WARP_M; i++) {
for (int k = 0; k < WARP_K; k++) {
#pragma unroll
for (int j = 0; j < WARP_N; j++) {
mma(C[i * WARP_N + j], A[i], B[j]);
for (int i = 0; i < WARP_M; i++) {
A[i].load(xs.idx(
base_addr_xs,
{offset_m + i * 16 + laneid % 16, k * 16 + laneid / 16 * 8}));
}
#pragma unroll
for (int i = 0; i < WARP_N; i++) {
B[i].load(ws.idx(
base_addr_ws,
{offset_n + i * 16 + laneid % 16, k * 16 + laneid / 16 * 8}));
}
#pragma unroll
for (int i = 0; i < WARP_M; i++) {
#pragma unroll
for (int j = 0; j < WARP_N; j++) {
mma(C[i * WARP_N + j], A[i], B[j]);
}
}
}
__syncthreads();
}
#pragma unroll
@@ -378,11 +453,16 @@ void qmm(
// dispatch_groups(group_size_, [&](auto group_size) {
// dispatch_bits(bits_, [&](auto bits) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::qmm<DataType, 64, 64, 32, 64, 4>;
constexpr int BM = 64;
constexpr int BN = 64;
constexpr int BK = 32;
auto kernel = cu::qmm<DataType, BM, BN, BK, 64, 4>;
dim3 grid(N / BN, M / BM);
enc.add_kernel_node(
kernel,
1,
grid,
128,
x.data<DataType>(),
w.data<uint8_t>(),