mirror of
https://github.com/ml-explore/mlx.git
synced 2025-11-07 04:38:13 +08:00
Refactor the matmul a bit
This commit is contained in:
80
mlx/backend/cuda/matmul/mma.cuh
Normal file
80
mlx/backend/cuda/matmul/mma.cuh
Normal file
@@ -0,0 +1,80 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/matmul/tiles.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
template <typename TileAccum, typename Tile>
|
||||
__device__ inline void mma(TileAccum& C, Tile& A, Tile& B) {}
|
||||
|
||||
/**
|
||||
* Multiply the 16x16 bfloat16 tiles and accumulate the result in one 16x16
|
||||
* float tile.
|
||||
*
|
||||
* We actually perform C += A @ B.T
|
||||
*/
|
||||
__device__ inline void mma(
|
||||
Tile16x16<float>& C,
|
||||
Tile16x16<__nv_bfloat16>& A,
|
||||
Tile16x16<__nv_bfloat16>& B) {
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[0].x),
|
||||
"+f"(C.values[0].y),
|
||||
"+f"(C.values[1].x),
|
||||
"+f"(C.values[1].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[0])),
|
||||
"r"(*(uint32_t*)(&B.values[2])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[0].x),
|
||||
"f"(C.values[0].y),
|
||||
"f"(C.values[1].x),
|
||||
"f"(C.values[1].y));
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[2].x),
|
||||
"+f"(C.values[2].y),
|
||||
"+f"(C.values[3].x),
|
||||
"+f"(C.values[3].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[1])),
|
||||
"r"(*(uint32_t*)(&B.values[3])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[2].x),
|
||||
"f"(C.values[2].y),
|
||||
"f"(C.values[3].x),
|
||||
"f"(C.values[3].y));
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
231
mlx/backend/cuda/matmul/tiles.cuh
Normal file
231
mlx/backend/cuda/matmul/tiles.cuh
Normal file
@@ -0,0 +1,231 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// Map types to their vector of 2 type float -> float2, double -> double2 etc
|
||||
template <typename T>
|
||||
struct Vector2;
|
||||
template <>
|
||||
struct Vector2<double> {
|
||||
using type = double2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<float> {
|
||||
using type = float2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__half> {
|
||||
using type = __half2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__nv_bfloat16> {
|
||||
using type = __nv_bfloat162;
|
||||
};
|
||||
template <typename T>
|
||||
using Vector2_t = typename Vector2<T>::type;
|
||||
|
||||
/**
|
||||
* The basic building block for Ampere mmas. A 16x16 tile distributed across
|
||||
* the warp.
|
||||
*
|
||||
* Each thread holds 8 values. They are distributed according to
|
||||
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-fragment-mma-16816-float
|
||||
*
|
||||
* For use instructions see the individual methods eg load().
|
||||
*/
|
||||
template <typename T>
|
||||
struct Tile16x16 {
|
||||
using T2 = Vector2_t<T>;
|
||||
|
||||
T2 values[4];
|
||||
|
||||
__device__ inline void clear() {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
values[i] = static_cast<T2>(0);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Load a 16x16 tile from shared memory.
|
||||
*
|
||||
* The instruction is a bit weird in the sense that the address provided by
|
||||
* each thread and the elements loaded are not the same.
|
||||
*
|
||||
* We load 4 8x8 tiles. The tile rows are stored contiguously in memory. As a
|
||||
* result the warp provides 4*8 = 32 addresses one per row.
|
||||
*
|
||||
* Threads 0-7 provide the addresses for the first tile, 8-15 for the second
|
||||
* and so on. For instance to load a non swizzled tile we would do
|
||||
*
|
||||
* base_addr + (laneid % 16) * BK + (laneid / 2) * 8
|
||||
*
|
||||
* See
|
||||
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-instructions-ldmatrix
|
||||
*/
|
||||
__device__ inline void load(uint32_t row_address) {
|
||||
if constexpr (
|
||||
std::is_same_v<T2, __nv_bfloat162> || std::is_same_v<T2, __half2>) {
|
||||
asm volatile(
|
||||
"ldmatrix.sync.aligned.m8n8.x4.shared::cta.b16 {%0, %1, %2, %3}, [%4];\n"
|
||||
: "=r"(*(uint32_t*)&(values[0])),
|
||||
"=r"(*(uint32_t*)&(values[1])),
|
||||
"=r"(*(uint32_t*)&(values[2])),
|
||||
"=r"(*(uint32_t*)&(values[3]))
|
||||
: "r"(row_address));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Store the tile to the address pointed to by `x`.
|
||||
*
|
||||
* The provided pointer is a generic pointer but this is meant to be used to
|
||||
* store to global memory. For storing to shared memory we should use
|
||||
* `stmatrix`.
|
||||
*
|
||||
* This also showcases the format of the tile quite nicely. Each register is
|
||||
* holding to adjacent values. The indices are
|
||||
*
|
||||
* row + 0, col + 0
|
||||
* row + 8, col + 0
|
||||
* row + 0, col + 8
|
||||
* row + 8, col + 8
|
||||
*
|
||||
* Given that we are dealing with Vector2_t<U> the column offsets are 4
|
||||
* instead of 8.
|
||||
*/
|
||||
template <typename U>
|
||||
__device__ inline void store_global(U* x, int N) {
|
||||
using U2 = Vector2_t<U>;
|
||||
U2* x2 = reinterpret_cast<U2*>(x);
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int row = laneid / 4;
|
||||
const int col = laneid % 4;
|
||||
if constexpr (std::is_same_v<U2, T2>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] = values[0];
|
||||
x2[(row + 0) * (N / 2) + col + 4] = values[2];
|
||||
x2[(row + 8) * (N / 2) + col + 0] = values[1];
|
||||
x2[(row + 8) * (N / 2) + col + 4] = values[3];
|
||||
} else if constexpr (
|
||||
std::is_same_v<T2, float2> && std::is_same_v<U, __nv_bfloat16>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[0].x, values[0].y);
|
||||
x2[(row + 0) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[2].x, values[2].y);
|
||||
x2[(row + 8) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[1].x, values[1].y);
|
||||
x2[(row + 8) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[3].x, values[3].y);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, int ROWS_, int COLS_>
|
||||
struct SharedTile {
|
||||
static constexpr int ROWS = ROWS_;
|
||||
static constexpr int COLS = COLS_;
|
||||
static constexpr int TILES_X = COLS / 16;
|
||||
static constexpr int TILES_Y = ROWS / 16;
|
||||
static constexpr int NUMEL = ROWS * COLS;
|
||||
|
||||
// Swizzle taken from ThunderKittens.
|
||||
//
|
||||
// See inludes/types/shared/st.cuh
|
||||
//
|
||||
// I do feel that it is too math heavy and can be improved. Also the math is
|
||||
// done every time although the addresses don't change from load to load. I
|
||||
// guess we are expecting the compiler to figure that out.
|
||||
static constexpr int swizzle_bytes =
|
||||
(sizeof(T) == 2 ? (TILES_X % 4 == 0 ? 128 : (TILES_X % 2 == 0 ? 64 : 32))
|
||||
: (sizeof(T) == 4 ? (TILES_X % 2 == 0 ? 128 : 64) : 0));
|
||||
|
||||
T data[ROWS * COLS];
|
||||
|
||||
// Return a pointer to the element at (row, col) using the swizzle.
|
||||
__device__ static inline T* ptr(T* ptr, int row, int col) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = col / subtile_cols;
|
||||
const uint64_t addr =
|
||||
(uint64_t)(&ptr
|
||||
[outer_idx * ROWS * subtile_cols + row * subtile_cols +
|
||||
col % subtile_cols]);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (T*)(addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + row * COLS + col;
|
||||
}
|
||||
}
|
||||
|
||||
// Return the location of the element at (row, col) using the swizzle.
|
||||
__device__ static inline uint32_t loc(uint32_t ptr, int row, int col) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = col / subtile_cols;
|
||||
const uint32_t addr = ptr +
|
||||
sizeof(T) *
|
||||
(outer_idx * ROWS * subtile_cols + row * subtile_cols +
|
||||
col % subtile_cols);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + sizeof(T) * (row * COLS + col);
|
||||
}
|
||||
}
|
||||
|
||||
// Convenience functions to edit elements going through the swizzle.
|
||||
__device__ inline T& operator()(int row, int col) {
|
||||
return *ptr(data, row, col);
|
||||
}
|
||||
__device__ inline void store(float4& v, int row, int col) {
|
||||
*(reinterpret_cast<float4*>(ptr(data, row, col))) = v;
|
||||
}
|
||||
__device__ inline void store(float2& v, int row, int col) {
|
||||
*(reinterpret_cast<float2*>(ptr(data, row, col))) = v;
|
||||
}
|
||||
__device__ inline void store(float& v, int row, int col) {
|
||||
*(reinterpret_cast<float*>(ptr(data, row, col))) = v;
|
||||
}
|
||||
template <int N>
|
||||
__device__ inline void store(T (&v)[N], int row, int col) {
|
||||
if constexpr (sizeof(T) * N == 4) {
|
||||
store(*(reinterpret_cast<float*>(&v[0])), row, col);
|
||||
} else if constexpr (sizeof(T) * N == 8) {
|
||||
store(*(reinterpret_cast<float2*>(&v[0])), row, col);
|
||||
} else if constexpr (sizeof(T) * N == 16) {
|
||||
store(*(reinterpret_cast<float4*>(&v[0])), row, col);
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; i++) {
|
||||
*ptr(data, row, col + i) = v[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <int NUM_WARPS, typename T, typename Tile>
|
||||
__device__ inline void load(Tile& tile, const T* x, int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
|
||||
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
x += row * N + col * ELEMENTS_PER_LOAD;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
float4 tmp;
|
||||
tmp = *(reinterpret_cast<const float4*>(&x[i * STEP_ROWS * N]));
|
||||
tile.store(tmp, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -2,6 +2,8 @@
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/matmul/mma.cuh"
|
||||
#include "mlx/backend/cuda/matmul/tiles.cuh"
|
||||
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
@@ -9,340 +11,43 @@ namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
template <typename T>
|
||||
struct Vector2;
|
||||
template <>
|
||||
struct Vector2<double> {
|
||||
using type = double2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<float> {
|
||||
using type = float2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__half> {
|
||||
using type = __half2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__nv_bfloat16> {
|
||||
using type = __nv_bfloat162;
|
||||
};
|
||||
template <typename T>
|
||||
using Vector2_t = typename Vector2<T>::type;
|
||||
template <int NUM_WARPS, int group_size, int bits, typename T, typename Tile>
|
||||
__device__ inline void load_quantized(
|
||||
Tile& tile,
|
||||
const uint8_t* x,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(uint32_t) * get_pack_factor<bits>();
|
||||
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
constexpr int MASK = (1 << bits) - 1;
|
||||
|
||||
template <typename T>
|
||||
struct Tile16x16 {
|
||||
using T2 = Vector2_t<T>;
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
T2 values[4];
|
||||
const int Nx = N / get_pack_factor<bits>();
|
||||
const int Ng = N / group_size;
|
||||
|
||||
__device__ inline void clear() {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
values[i] = static_cast<T2>(0);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ inline void load(uint32_t src_address) {
|
||||
if constexpr (
|
||||
std::is_same_v<T2, __nv_bfloat162> || std::is_same_v<T2, __half2>) {
|
||||
asm volatile(
|
||||
"ldmatrix.sync.aligned.m8n8.x4.shared::cta.b16 {%0, %1, %2, %3}, [%4];\n"
|
||||
: "=r"(*(uint32_t*)&(values[0])),
|
||||
"=r"(*(uint32_t*)&(values[1])),
|
||||
"=r"(*(uint32_t*)&(values[2])),
|
||||
"=r"(*(uint32_t*)&(values[3]))
|
||||
: "r"(src_address));
|
||||
}
|
||||
}
|
||||
|
||||
__device__ inline void store(uint32_t dst_address) {
|
||||
if constexpr (
|
||||
std::is_same_v<T2, __nv_bfloat162> || std::is_same_v<T2, __half2>) {
|
||||
asm volatile(
|
||||
"stmatrix.sync.aligned.m8n8.x4.shared::cta.b16 {%0, %1, %2, %3}, [%4];\n"
|
||||
: "=r"(*(uint32_t*)&(values[0])),
|
||||
"=r"(*(uint32_t*)&(values[1])),
|
||||
"=r"(*(uint32_t*)&(values[2])),
|
||||
"=r"(*(uint32_t*)&(values[3]))
|
||||
: "r"(dst_address));
|
||||
} else {
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int row = laneid / 4;
|
||||
const int col = laneid % 4;
|
||||
|
||||
const uint32_t a = dst_address + ((row + 0) * 8 + col + 0) * sizeof(T2);
|
||||
const uint32_t b = dst_address + ((row + 0) * 8 + col + 4) * sizeof(T2);
|
||||
const uint32_t c = dst_address + ((row + 8) * 8 + col + 0) * sizeof(T2);
|
||||
const uint32_t d = dst_address + ((row + 8) * 8 + col + 4) * sizeof(T2);
|
||||
if constexpr (sizeof(T2) == 4) {
|
||||
asm volatile("st.shared.b32 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[0])), "r"(a));
|
||||
asm volatile("st.shared.b32 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[2])), "r"(b));
|
||||
asm volatile("st.shared.b32 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[1])), "r"(c));
|
||||
asm volatile("st.shared.b32 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[3])), "r"(d));
|
||||
} else if constexpr (sizeof(T2) == 8) {
|
||||
asm volatile("st.shared.b64 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint64_t*)&(values[0])), "r"(a));
|
||||
asm volatile("st.shared.b64 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint64_t*)&(values[2])), "r"(b));
|
||||
asm volatile("st.shared.b64 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint64_t*)&(values[1])), "r"(c));
|
||||
asm volatile("st.shared.b64 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint64_t*)&(values[3])), "r"(d));
|
||||
} else if constexpr (sizeof(T2) == 16) {
|
||||
asm volatile("st.shared.b128 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(__int128*)&(values[0])), "r"(a));
|
||||
asm volatile("st.shared.b128 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(__int128*)&(values[2])), "r"(b));
|
||||
asm volatile("st.shared.b128 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(__int128*)&(values[1])), "r"(c));
|
||||
asm volatile("st.shared.b128 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(__int128*)&(values[3])), "r"(d));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
__device__ inline void store_global(U* x, int N) {
|
||||
using U2 = Vector2_t<U>;
|
||||
U2* x2 = reinterpret_cast<U2*>(x);
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int row = laneid / 4;
|
||||
const int col = laneid % 4;
|
||||
if constexpr (std::is_same_v<U2, T2>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] = values[0];
|
||||
x2[(row + 0) * (N / 2) + col + 4] = values[2];
|
||||
x2[(row + 8) * (N / 2) + col + 0] = values[1];
|
||||
x2[(row + 8) * (N / 2) + col + 4] = values[3];
|
||||
} else if constexpr (
|
||||
std::is_same_v<T2, float2> && std::is_same_v<U, __nv_bfloat16>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[0].x, values[0].y);
|
||||
x2[(row + 0) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[2].x, values[2].y);
|
||||
x2[(row + 8) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[1].x, values[1].y);
|
||||
x2[(row + 8) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[3].x, values[3].y);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, int ROWS, int COLS>
|
||||
struct __align__(16) SharedTile {
|
||||
static constexpr int TILES_R = ROWS / 16;
|
||||
static constexpr int TILES_C = COLS / 16;
|
||||
static constexpr int NUM_ELEMENTS = ROWS * COLS;
|
||||
|
||||
static constexpr int swizzle_bytes =
|
||||
(sizeof(T) == 2 ? (TILES_C % 4 == 0 ? 128 : (TILES_C % 2 == 0 ? 64 : 32))
|
||||
: (sizeof(T) == 4 ? (TILES_C % 2 == 0 ? 128 : 64) : 0));
|
||||
|
||||
T data[ROWS * COLS];
|
||||
|
||||
__device__ static inline T* idx(T* ptr, int2 coord) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
int r = coord.x, c = coord.y;
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = c / subtile_cols;
|
||||
const uint64_t addr =
|
||||
(uint64_t)(&ptr
|
||||
[outer_idx * ROWS * subtile_cols + r * subtile_cols +
|
||||
c % subtile_cols]);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (T*)(addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + coord.y * COLS + coord.x;
|
||||
}
|
||||
}
|
||||
|
||||
__device__ static inline uint32_t idx(uint32_t ptr, int2 coord) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
int r = coord.x, c = coord.y;
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = c / subtile_cols;
|
||||
const uint32_t addr = ptr +
|
||||
sizeof(T) *
|
||||
(outer_idx * ROWS * subtile_cols + r * subtile_cols +
|
||||
c % subtile_cols);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + sizeof(T) * (coord.y * COLS + coord.x);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ inline T& operator[](int2 coord) {
|
||||
return *idx(&data[0], coord);
|
||||
}
|
||||
|
||||
__device__ inline void store(float4& v, int2 coord) {
|
||||
*(reinterpret_cast<float4*>(idx(data, coord))) = v;
|
||||
}
|
||||
|
||||
__device__ inline void store(float2& v, int2 coord) {
|
||||
*(reinterpret_cast<float2*>(idx(data, coord))) = v;
|
||||
}
|
||||
|
||||
__device__ inline void store(float& v, int2 coord) {
|
||||
*(reinterpret_cast<float*>(idx(data, coord))) = v;
|
||||
}
|
||||
|
||||
template <int N>
|
||||
__device__ inline void store(T (&v)[N], int2 coord) {
|
||||
if constexpr (sizeof(T) * N == 4) {
|
||||
store(*(reinterpret_cast<float*>(&v[0])), coord);
|
||||
} else if constexpr (sizeof(T) * N == 8) {
|
||||
store(*(reinterpret_cast<float2*>(&v[0])), coord);
|
||||
} else if constexpr (sizeof(T) * N == 16) {
|
||||
store(*(reinterpret_cast<float4*>(&v[0])), coord);
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; i++) {
|
||||
*idx(data, {coord.x, coord.y + i}) = v[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int NUM_WARPS>
|
||||
__device__ inline void load(const T* x, int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
|
||||
constexpr int NUM_LOADS = NUM_ELEMENTS / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
x += row * N + col * ELEMENTS_PER_LOAD;
|
||||
x += row * Nx + col * (ELEMENTS_PER_LOAD / get_pack_factor<bits>());
|
||||
scales += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
|
||||
biases += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
float4 tmp;
|
||||
tmp = *(reinterpret_cast<const float4*>(&x[i * STEP_ROWS * N]));
|
||||
store(tmp, {row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD});
|
||||
}
|
||||
}
|
||||
|
||||
template <int NUM_WARPS, int group_size, int bits>
|
||||
__device__ inline void
|
||||
load_quantized(const uint8_t* x, const T* scales, const T* biases, int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD =
|
||||
sizeof(uint32_t) * get_pack_factor<bits>();
|
||||
constexpr int NUM_LOADS = NUM_ELEMENTS / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
constexpr int MASK = (1 << bits) - 1;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
const int Nx = N / get_pack_factor<bits>();
|
||||
const int Ng = N / group_size;
|
||||
|
||||
x += row * Nx + col * (ELEMENTS_PER_LOAD / get_pack_factor<bits>());
|
||||
scales += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
|
||||
biases += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
|
||||
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
T vs[ELEMENTS_PER_LOAD];
|
||||
uint32_t w = *reinterpret_cast<const uint32_t*>(x + i * STEP_ROWS * Nx);
|
||||
T s = scales[i * STEP_ROWS * Ng];
|
||||
T b = biases[i * STEP_ROWS * Ng];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
T vs[ELEMENTS_PER_LOAD];
|
||||
uint32_t w = *reinterpret_cast<const uint32_t*>(x + i * STEP_ROWS * Nx);
|
||||
T s = scales[i * STEP_ROWS * Ng];
|
||||
T b = biases[i * STEP_ROWS * Ng];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < ELEMENTS_PER_LOAD; j++) {
|
||||
vs[j] = static_cast<T>((w >> (j * bits)) & MASK) * s + b;
|
||||
}
|
||||
store(vs, {row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD});
|
||||
for (int j = 0; j < ELEMENTS_PER_LOAD; j++) {
|
||||
vs[j] = static_cast<T>((w >> (j * bits)) & MASK) * s + b;
|
||||
}
|
||||
tile.store(vs, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename TileAccum, typename Tile>
|
||||
__device__ inline void mma(TileAccum& C, Tile& A, Tile& B) {}
|
||||
|
||||
__device__ inline void mma(
|
||||
Tile16x16<float>& C,
|
||||
Tile16x16<__nv_bfloat16>& A,
|
||||
Tile16x16<__nv_bfloat16>& B) {
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[0].x),
|
||||
"+f"(C.values[0].y),
|
||||
"+f"(C.values[1].x),
|
||||
"+f"(C.values[1].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[0])),
|
||||
"r"(*(uint32_t*)(&B.values[2])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[0].x),
|
||||
"f"(C.values[0].y),
|
||||
"f"(C.values[1].x),
|
||||
"f"(C.values[1].y));
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[2].x),
|
||||
"+f"(C.values[2].y),
|
||||
"+f"(C.values[3].x),
|
||||
"+f"(C.values[3].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[1])),
|
||||
"r"(*(uint32_t*)(&B.values[3])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[2].x),
|
||||
"f"(C.values[2].y),
|
||||
"f"(C.values[3].x),
|
||||
"f"(C.values[3].y));
|
||||
}
|
||||
|
||||
template <typename T, int BM, int BN, int BK, int group_size, int bits>
|
||||
@@ -389,8 +94,9 @@ __global__ void qmm(
|
||||
uint32_t base_addr_ws = __cvta_generic_to_shared(&ws.data[0]);
|
||||
|
||||
for (int k_block = 0; k_block < K; k_block += BK) {
|
||||
xs.load<NUM_WARPS>(x + k_block, K);
|
||||
ws.load_quantized<NUM_WARPS, group_size, bits>(
|
||||
load<NUM_WARPS>(xs, x + k_block, K);
|
||||
load_quantized<NUM_WARPS, group_size, bits>(
|
||||
ws,
|
||||
w + k_block / get_pack_factor<bits>(),
|
||||
scales + k_block / group_size,
|
||||
biases + k_block / group_size,
|
||||
@@ -401,15 +107,17 @@ __global__ void qmm(
|
||||
for (int k = 0; k < WARP_K; k++) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < WARP_M; i++) {
|
||||
A[i].load(xs.idx(
|
||||
A[i].load(xs.loc(
|
||||
base_addr_xs,
|
||||
{offset_m + i * 16 + laneid % 16, k * 16 + laneid / 16 * 8}));
|
||||
offset_m + i * 16 + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8));
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i = 0; i < WARP_N; i++) {
|
||||
B[i].load(ws.idx(
|
||||
B[i].load(ws.loc(
|
||||
base_addr_ws,
|
||||
{offset_n + i * 16 + laneid % 16, k * 16 + laneid / 16 * 8}));
|
||||
offset_n + i * 16 + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8));
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
@@ -420,7 +128,6 @@ __global__ void qmm(
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
@@ -450,30 +157,31 @@ void qmm(
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
dispatch_float_types(x.dtype(), "qmm", [&](auto type_tag) {
|
||||
// dispatch_groups(group_size_, [&](auto group_size) {
|
||||
// dispatch_bits(bits_, [&](auto bits) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int BM = 64;
|
||||
constexpr int BN = 64;
|
||||
constexpr int BK = 32;
|
||||
auto kernel = cu::qmm<DataType, BM, BN, BK, 64, 4>;
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int BM = 64;
|
||||
constexpr int BN = 64;
|
||||
constexpr int BK = 32;
|
||||
auto kernel =
|
||||
cu::qmm<DataType, BM, BN, BK, group_size.value, bits.value>;
|
||||
|
||||
dim3 grid(N / BN, M / BM);
|
||||
dim3 grid(N / BN, M / BM);
|
||||
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
128,
|
||||
x.data<DataType>(),
|
||||
w.data<uint8_t>(),
|
||||
scales.data<DataType>(),
|
||||
biases.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
M,
|
||||
N,
|
||||
K);
|
||||
//});
|
||||
//});
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
128,
|
||||
x.data<DataType>(),
|
||||
w.data<uint8_t>(),
|
||||
scales.data<DataType>(),
|
||||
biases.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
M,
|
||||
N,
|
||||
K);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user