mirror of
https://github.com/ml-explore/mlx.git
synced 2025-11-05 11:28:12 +08:00
Add mode parameter for quantization (#2499)
* add mode parameter for quantization * mxfp4 quantize/dequantize + start of optional biases * mxfp4 works * speedup * cpu mxfp4 * fix * fix test tol * fix * refactor * add quant mode enum
This commit is contained in:
@@ -39,6 +39,6 @@ class Embedding(Module):
|
||||
"""
|
||||
return x @ self.weight.T
|
||||
|
||||
def to_quantized(self, group_size: int = 64, bits: int = 4):
|
||||
def to_quantized(self, group_size: int = 64, bits: int = 4, mode: str = "affine"):
|
||||
"""Return a :obj:`QuantizedEmbedding` layer that approximates this embedding layer."""
|
||||
return QuantizedEmbedding.from_embedding(self, group_size, bits)
|
||||
return QuantizedEmbedding.from_embedding(self, group_size, bits, mode)
|
||||
|
||||
@@ -70,9 +70,9 @@ class Linear(Module):
|
||||
x = x @ self["weight"].T
|
||||
return x
|
||||
|
||||
def to_quantized(self, group_size: int = 64, bits: int = 4):
|
||||
def to_quantized(self, group_size: int = 64, bits: int = 4, mode: str = "affine"):
|
||||
"""Return a :obj:`QuantizedLinear` layer that approximates this layer."""
|
||||
return QuantizedLinear.from_linear(self, group_size, bits)
|
||||
return QuantizedLinear.from_linear(self, group_size, bits, mode)
|
||||
|
||||
|
||||
class Bilinear(Module):
|
||||
|
||||
@@ -12,6 +12,8 @@ def quantize(
|
||||
model: Module,
|
||||
group_size: int = 64,
|
||||
bits: int = 4,
|
||||
*,
|
||||
mode: str = "affine",
|
||||
class_predicate: Optional[Callable[[str, Module], Union[bool, dict]]] = None,
|
||||
):
|
||||
"""Quantize the sub-modules of a module according to a predicate.
|
||||
@@ -26,6 +28,8 @@ def quantize(
|
||||
:func:`mlx.core.quantize`). Default: ``64``.
|
||||
bits (int): The number of bits per parameter (see
|
||||
:func:`mlx.core.quantize`). Default: ``4``.
|
||||
mode (str): The quantization method to use (see
|
||||
:func:`mlx.core.quantize`). Default: ``"affine"``.
|
||||
class_predicate (Optional[Callable]): A callable which receives the
|
||||
:obj:`Module` path and :obj:`Module` itself and returns ``True`` or a
|
||||
dict of params for `to_quantized` if it should be quantized and
|
||||
@@ -39,7 +43,7 @@ def quantize(
|
||||
if bool_or_params := class_predicate(path, m):
|
||||
if hasattr(m, "to_quantized"):
|
||||
if isinstance(bool_or_params, bool):
|
||||
return m.to_quantized(group_size=group_size, bits=bits)
|
||||
return m.to_quantized(group_size=group_size, bits=bits, mode=mode)
|
||||
elif isinstance(bool_or_params, dict):
|
||||
return m.to_quantized(**bool_or_params)
|
||||
else:
|
||||
@@ -72,6 +76,8 @@ class QuantizedEmbedding(Module):
|
||||
weight. See :func:`~mlx.core.quantize`. Default: ``64``.
|
||||
bits (int, optional): The bit width to use for the quantized weight.
|
||||
See :func:`~mlx.core.quantize`. Default: ``4``.
|
||||
mode (str): The quantization method to use (see
|
||||
:func:`mlx.core.quantize`). Default: ``"affine"``.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -80,17 +86,23 @@ class QuantizedEmbedding(Module):
|
||||
dims: int,
|
||||
group_size: int = 64,
|
||||
bits: int = 4,
|
||||
mode: str = "affine",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Quantization config
|
||||
self.group_size = group_size
|
||||
self.bits = bits
|
||||
self.mode = mode
|
||||
|
||||
# Initialize the quantized weight
|
||||
scale = math.sqrt(1 / dims)
|
||||
weight = mx.random.normal(shape=(num_embeddings, dims), scale=scale)
|
||||
self.weight, self.scales, self.biases = mx.quantize(weight, group_size, bits)
|
||||
self.weight, *scales_biases = mx.quantize(weight, group_size, bits, mode=mode)
|
||||
if mode == "affine":
|
||||
self.scales, self.biases = scales_biases
|
||||
else:
|
||||
(self.scales,) = scales_biases
|
||||
self.num_embeddings = num_embeddings
|
||||
self.dims = dims
|
||||
|
||||
@@ -98,12 +110,14 @@ class QuantizedEmbedding(Module):
|
||||
self.freeze()
|
||||
|
||||
def __call__(self, x):
|
||||
biases = self.get("biases")
|
||||
return mx.dequantize(
|
||||
self["weight"][x],
|
||||
scales=self["scales"][x],
|
||||
biases=self["biases"][x],
|
||||
biases=biases[x] if biases is not None else None,
|
||||
group_size=self.group_size,
|
||||
bits=self.bits,
|
||||
mode=self.mode,
|
||||
)
|
||||
|
||||
def as_linear(self, x):
|
||||
@@ -117,28 +131,40 @@ class QuantizedEmbedding(Module):
|
||||
x,
|
||||
self["weight"],
|
||||
scales=self["scales"],
|
||||
biases=self["biases"],
|
||||
biases=self.get("biases"),
|
||||
transpose=True,
|
||||
group_size=self.group_size,
|
||||
bits=self.bits,
|
||||
mode=self.mode,
|
||||
)
|
||||
|
||||
def _extra_repr(self):
|
||||
return (
|
||||
f"{self.num_embeddings}, {self.dims}, "
|
||||
f"group_size={self.group_size}, bits={self.bits}"
|
||||
f"group_size={self.group_size}, bits={self.bits}, mode={self.mode}"
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_embedding(
|
||||
cls, embedding_layer: Module, group_size: int = 64, bits: int = 4
|
||||
cls,
|
||||
embedding_layer: Module,
|
||||
group_size: int = 64,
|
||||
bits: int = 4,
|
||||
mode: str = "affine",
|
||||
):
|
||||
"""Create a :obj:`QuantizedEmbedding` layer from an :obj:`Embedding` layer."""
|
||||
embedding_dims, dims = embedding_layer.weight.shape
|
||||
ql = cls(embedding_dims, dims, group_size, bits)
|
||||
ql.weight, ql.scales, ql.biases = mx.quantize(
|
||||
embedding_layer.weight, group_size, bits
|
||||
ql = cls(embedding_dims, dims, group_size, bits, mode=mode)
|
||||
ql.weight, *scales_biases = mx.quantize(
|
||||
embedding_layer.weight,
|
||||
group_size,
|
||||
bits,
|
||||
mode=mode,
|
||||
)
|
||||
if mode == "affine":
|
||||
ql.scales, ql.biases = scales_biases
|
||||
else:
|
||||
(ql.scales,) = scales_biases
|
||||
return ql
|
||||
|
||||
|
||||
@@ -161,6 +187,8 @@ class QuantizedLinear(Module):
|
||||
weight. See :func:`~mlx.core.quantize`. Default: ``64``.
|
||||
bits (int, optional): The bit width to use for the quantized weight.
|
||||
See :func:`~mlx.core.quantize`. Default: ``4``.
|
||||
mode (str): The quantization method to use (see
|
||||
:func:`mlx.core.quantize`). Default: ``"affine"``.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -170,12 +198,14 @@ class QuantizedLinear(Module):
|
||||
bias: bool = True,
|
||||
group_size: int = 64,
|
||||
bits: int = 4,
|
||||
mode: str = "affine",
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# Quantization config
|
||||
self.group_size = group_size
|
||||
self.bits = bits
|
||||
self.mode = mode
|
||||
|
||||
# Initialize the quantized weight
|
||||
scale = math.sqrt(1 / input_dims)
|
||||
@@ -184,7 +214,11 @@ class QuantizedLinear(Module):
|
||||
high=scale,
|
||||
shape=(output_dims, input_dims),
|
||||
)
|
||||
self.weight, self.scales, self.biases = mx.quantize(weight, group_size, bits)
|
||||
self.weight, *scales_biases = mx.quantize(weight, group_size, bits, mode=mode)
|
||||
if mode == "affine":
|
||||
self.scales, self.biases = scales_biases
|
||||
else:
|
||||
(self.scales,) = scales_biases
|
||||
|
||||
# And bias if needed
|
||||
if bias:
|
||||
@@ -198,7 +232,7 @@ class QuantizedLinear(Module):
|
||||
in_dims *= 32 // self.bits
|
||||
return (
|
||||
f"input_dims={in_dims}, output_dims={out_dims}, bias={'bias' in self}, "
|
||||
f"group_size={self.group_size}, bits={self.bits}"
|
||||
f"group_size={self.group_size}, bits={self.bits}, mode={self.mode}"
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
@@ -206,23 +240,38 @@ class QuantizedLinear(Module):
|
||||
x,
|
||||
self["weight"],
|
||||
scales=self["scales"],
|
||||
biases=self["biases"],
|
||||
biases=self.get("biases"),
|
||||
transpose=True,
|
||||
group_size=self.group_size,
|
||||
bits=self.bits,
|
||||
mode=self.mode,
|
||||
)
|
||||
if "bias" in self:
|
||||
x = x + self["bias"]
|
||||
return x
|
||||
|
||||
@classmethod
|
||||
def from_linear(cls, linear_layer: Module, group_size: int = 64, bits: int = 4):
|
||||
def from_linear(
|
||||
cls,
|
||||
linear_layer: Module,
|
||||
group_size: int = 64,
|
||||
bits: int = 4,
|
||||
mode: str = "affine",
|
||||
):
|
||||
"""Create a :obj:`QuantizedLinear` layer from a :obj:`Linear` layer."""
|
||||
output_dims, input_dims = linear_layer.weight.shape
|
||||
ql = cls(input_dims, output_dims, False, group_size, bits)
|
||||
ql.weight, ql.scales, ql.biases = mx.quantize(
|
||||
linear_layer.weight, group_size, bits
|
||||
ql = cls(input_dims, output_dims, False, group_size, bits, mode=mode)
|
||||
ql.weight, *scales_biases = mx.quantize(
|
||||
linear_layer.weight,
|
||||
group_size,
|
||||
bits,
|
||||
mode=mode,
|
||||
)
|
||||
if mode == "affine":
|
||||
ql.scales, ql.biases = scales_biases
|
||||
else:
|
||||
(ql.scales,) = scales_biases
|
||||
|
||||
if "bias" in linear_layer:
|
||||
ql.bias = linear_layer.bias
|
||||
|
||||
|
||||
Reference in New Issue
Block a user