mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-13 04:36:46 +08:00
Support destination arg in tree flatten/unflatten (#2450)
This commit is contained in:
parent
db5c7efcf6
commit
728d4db582
@ -51,14 +51,14 @@ the saved state. Here's a simple example:
|
||||
optimizer.update(model, grads)
|
||||
|
||||
# Save the state
|
||||
state = tree_flatten(optimizer.state)
|
||||
mx.save_safetensors("optimizer.safetensors", dict(state))
|
||||
state = tree_flatten(optimizer.state, destination={})
|
||||
mx.save_safetensors("optimizer.safetensors", state)
|
||||
|
||||
# Later on, for example when loading from a checkpoint,
|
||||
# recreate the optimizer and load the state
|
||||
optimizer = optim.Adam(learning_rate=1e-2)
|
||||
|
||||
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
|
||||
state = tree_unflatten(mx.load("optimizer.safetensors"))
|
||||
optimizer.state = state
|
||||
|
||||
Note, not every optimizer configuation parameter is saved in the state. For
|
||||
|
@ -151,7 +151,7 @@ parameters, pass them as inputs to the ``call`` wrapper:
|
||||
model.update(tree_unflatten(list(params.items())))
|
||||
return model(x)
|
||||
|
||||
params = dict(tree_flatten(model.parameters()))
|
||||
params = tree_flatten(model.parameters(), destination={})
|
||||
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
|
||||
|
||||
|
||||
|
@ -178,7 +178,7 @@ class Module(dict):
|
||||
|
||||
if strict:
|
||||
new_weights = dict(weights)
|
||||
curr_weights = dict(tree_flatten(self.parameters()))
|
||||
curr_weights = tree_flatten(self.parameters(), destination={})
|
||||
if extras := (new_weights.keys() - curr_weights.keys()):
|
||||
num_extra = len(extras)
|
||||
extras = ",\n".join(sorted(extras))
|
||||
@ -212,7 +212,7 @@ class Module(dict):
|
||||
- ``.npz`` will use :func:`mx.savez`
|
||||
- ``.safetensors`` will use :func:`mx.save_safetensors`
|
||||
"""
|
||||
params_dict = dict(tree_flatten(self.parameters()))
|
||||
params_dict = tree_flatten(self.parameters(), destination={})
|
||||
|
||||
if file.endswith(".npz"):
|
||||
mx.savez(file, **params_dict)
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
from collections import defaultdict
|
||||
from itertools import zip_longest
|
||||
from typing import Any, Callable, List, Optional, Tuple
|
||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||||
|
||||
|
||||
def tree_map(
|
||||
@ -114,8 +114,11 @@ def tree_map_with_path(
|
||||
|
||||
|
||||
def tree_flatten(
|
||||
tree: Any, prefix: str = "", is_leaf: Optional[Callable] = None
|
||||
) -> Any:
|
||||
tree: Any,
|
||||
prefix: str = "",
|
||||
is_leaf: Optional[Callable] = None,
|
||||
destination: Optional[Union[List[Tuple[str, Any]], Dict[str, Any]]] = None,
|
||||
) -> Union[List[Tuple[str, Any]], Dict[str, Any]]:
|
||||
"""Flattens a Python tree to a list of key, value tuples.
|
||||
|
||||
The keys are using the dot notation to define trees of arbitrary depth and
|
||||
@ -128,9 +131,12 @@ def tree_flatten(
|
||||
print(tree_flatten([[[0]]]))
|
||||
# [("0.0.0", 0)]
|
||||
|
||||
print(tree_flatten([[[0]]], ".hello"))
|
||||
print(tree_flatten([[[0]]], prefix=".hello"))
|
||||
# [("hello.0.0.0", 0)]
|
||||
|
||||
tree_flatten({"a": {"b": 1}}, destination={})
|
||||
{"a.b": 1}
|
||||
|
||||
.. note::
|
||||
Dictionaries should have keys that are valid Python identifiers.
|
||||
|
||||
@ -140,26 +146,50 @@ def tree_flatten(
|
||||
always discarded.
|
||||
is_leaf (callable): An optional callable that returns True if the
|
||||
passed object is considered a leaf or False otherwise.
|
||||
destination (list or dict, optional): A list or dictionary to store the
|
||||
flattened tree. If None an empty list will be used. Default: ``None``.
|
||||
|
||||
Returns:
|
||||
List[Tuple[str, Any]]: The flat representation of the Python tree.
|
||||
Union[List[Tuple[str, Any]], Dict[str, Any]]: The flat representation of
|
||||
the Python tree.
|
||||
"""
|
||||
flat_tree = []
|
||||
if destination is None:
|
||||
destination = []
|
||||
|
||||
if is_leaf is None or not is_leaf(tree):
|
||||
# Create the function to update the destination. We are taking advantage of
|
||||
# the fact that list.extend and dict.update have the same API to simplify
|
||||
# the code a bit.
|
||||
if isinstance(destination, list):
|
||||
_add_to_destination = destination.extend
|
||||
elif isinstance(destination, dict):
|
||||
_add_to_destination = destination.update
|
||||
else:
|
||||
raise ValueError("Destination should be either a list or a dictionary or None")
|
||||
|
||||
# Leaf identified by is_leaf so add it and return
|
||||
if is_leaf is not None and is_leaf(tree):
|
||||
_add_to_destination([(prefix[1:], tree)])
|
||||
return destination
|
||||
|
||||
# List or tuple so recursively add each subtree
|
||||
if isinstance(tree, (list, tuple)):
|
||||
for i, t in enumerate(tree):
|
||||
flat_tree.extend(tree_flatten(t, f"{prefix}.{i}", is_leaf))
|
||||
return flat_tree
|
||||
for i, item in enumerate(tree):
|
||||
tree_flatten(item, f"{prefix}.{i}", is_leaf, destination)
|
||||
return destination
|
||||
|
||||
# Dictionary so recursively add each subtree
|
||||
if isinstance(tree, dict):
|
||||
for k, t in tree.items():
|
||||
flat_tree.extend(tree_flatten(t, f"{prefix}.{k}", is_leaf))
|
||||
return flat_tree
|
||||
for key, value in tree.items():
|
||||
tree_flatten(value, f"{prefix}.{key}", is_leaf, destination)
|
||||
return destination
|
||||
|
||||
return [(prefix[1:], tree)]
|
||||
# Leaf so add it and return
|
||||
_add_to_destination([(prefix[1:], tree)])
|
||||
|
||||
return destination
|
||||
|
||||
|
||||
def tree_unflatten(tree: List[Tuple[str, Any]]) -> Any:
|
||||
def tree_unflatten(tree: Union[List[Tuple[str, Any]], Dict[str, Any]]) -> Any:
|
||||
"""Recreate a Python tree from its flat representation.
|
||||
|
||||
.. code-block:: python
|
||||
@ -170,31 +200,34 @@ def tree_unflatten(tree: List[Tuple[str, Any]]) -> Any:
|
||||
print(d)
|
||||
# {"hello": {"world": 42}}
|
||||
|
||||
d = tree_unflatten({"hello.world": 42})
|
||||
print(d)
|
||||
# {"hello": {"world": 42}}
|
||||
|
||||
Args:
|
||||
tree (list[tuple[str, Any]]): The flat representation of a Python tree.
|
||||
tree (list[tuple[str, Any]] or dict[str, Any]): The flat representation of a Python tree.
|
||||
For instance as returned by :meth:`tree_flatten`.
|
||||
|
||||
Returns:
|
||||
A Python tree.
|
||||
"""
|
||||
if len(tree) == 1 and tree[0][0] == "":
|
||||
return tree[0][1]
|
||||
items = tree.items() if isinstance(tree, dict) else tree
|
||||
|
||||
try:
|
||||
int(tree[0][0].split(".", maxsplit=1)[0])
|
||||
is_list = True
|
||||
except ValueError:
|
||||
is_list = False
|
||||
# Special case when we have just one element in the tree ie not a tree
|
||||
if len(items) == 1:
|
||||
key, value = next(iter(items))
|
||||
if key == "":
|
||||
return value
|
||||
|
||||
# collect children
|
||||
children = defaultdict(list)
|
||||
for key, value in tree:
|
||||
for key, value in items:
|
||||
current_idx, *next_idx = key.split(".", maxsplit=1)
|
||||
next_idx = "" if not next_idx else next_idx[0]
|
||||
children[current_idx].append((next_idx, value))
|
||||
|
||||
# recursively map them to the original container
|
||||
if is_list:
|
||||
# Assume they are a list and fail to dict if the keys are not all integers
|
||||
try:
|
||||
keys = sorted((int(idx), idx) for idx in children.keys())
|
||||
l = []
|
||||
for i, k in keys:
|
||||
@ -202,7 +235,7 @@ def tree_unflatten(tree: List[Tuple[str, Any]]) -> Any:
|
||||
l.extend([{} for _ in range(i - len(l))])
|
||||
l.append(tree_unflatten(children[k]))
|
||||
return l
|
||||
else:
|
||||
except ValueError:
|
||||
return {k: tree_unflatten(v) for k, v in children.items()}
|
||||
|
||||
|
||||
|
@ -80,7 +80,7 @@ class TestBase(mlx_tests.MLXTestCase):
|
||||
self.weights = {"w1": mx.zeros((2, 2)), "w2": mx.ones((2, 2))}
|
||||
|
||||
model = DictModule()
|
||||
params = dict(tree_flatten(model.parameters()))
|
||||
params = tree_flatten(model.parameters(), destination={})
|
||||
self.assertEqual(len(params), 2)
|
||||
self.assertTrue(mx.array_equal(params["weights.w1"], mx.zeros((2, 2))))
|
||||
self.assertTrue(mx.array_equal(params["weights.w2"], mx.ones((2, 2))))
|
||||
|
Loading…
Reference in New Issue
Block a user