CUDA backend: argreduce

This commit is contained in:
Cheng
2025-04-18 00:37:30 +00:00
parent a04436b629
commit 731b412062
6 changed files with 291 additions and 1 deletions

View File

@@ -6,6 +6,7 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp

View File

@@ -0,0 +1,198 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
#include <cassert>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename U>
struct IndexValPair {
uint32_t index;
U val;
};
template <typename U>
struct ArgMin {
static constexpr U init = Limits<U>::max;
__device__ IndexValPair<U> operator()(
const IndexValPair<U>& best,
const IndexValPair<U>& current) {
if (best.val > current.val ||
(best.val == current.val && best.index > current.index)) {
return current;
} else {
return best;
}
}
template <int N>
__device__ IndexValPair<U>
reduce_many(IndexValPair<U> best, U (&vals)[N], uint32_t offset) {
for (int i = 0; i < N; i++) {
if (vals[i] < best.val) {
best.val = vals[i];
best.index = offset + i;
}
}
return best;
}
};
template <typename U>
struct ArgMax {
static constexpr U init = Limits<U>::min;
__device__ IndexValPair<U> operator()(
const IndexValPair<U>& best,
const IndexValPair<U>& current) {
if (best.val < current.val ||
(best.val == current.val && best.index > current.index)) {
return current;
} else {
return best;
}
}
template <int N>
__device__ IndexValPair<U>
reduce_many(IndexValPair<U> best, U (&vals)[N], uint32_t offset) {
for (int i = 0; i < N; i++) {
if (vals[i] > best.val) {
best.val = vals[i];
best.index = offset + i;
}
}
return best;
}
};
template <typename U>
inline __device__ IndexValPair<U> warp_shuffle_down(
const cg::thread_block_tile<WARP_SIZE>& g,
const IndexValPair<U>& data,
int delta) {
return {g.shfl_down(data.index, delta), g.shfl_down(data.val, delta)};
}
template <typename T, typename Op, int BLOCK_DIM, int N_READS = 4>
__global__ void arg_reduce_general(
const T* in,
uint32_t* out,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides in_strides,
const __grid_constant__ Strides out_strides,
size_t ndim,
int64_t axis_stride,
size_t axis_size) {
// Shapes and strides *do not* contain the reduction axis. The reduction size
// and stride are provided in axis_stride and axis_size.
//
// Note: in shape == out shape with this convention.
Op op;
// Compute the input/output index. There is one beginning and one output for
// the whole block.
auto elem = cg::this_grid().block_rank();
auto in_idx = elem_to_loc(elem, shape.data(), in_strides.data(), ndim);
auto out_idx = elem_to_loc(elem, shape.data(), out_strides.data(), ndim);
IndexValPair<T> best{0, Op::init};
auto block = cg::this_thread_block();
for (size_t r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
T vals[N_READS];
auto index = r * BLOCK_DIM + block.thread_index().z;
cub::LoadDirectBlocked(
index,
strided_iterator(in + in_idx, axis_stride),
vals,
axis_size,
Op::init);
best = op.reduce_many(best, vals, index * N_READS);
}
typedef cub::BlockReduce<IndexValPair<T>, BLOCK_DIM> BlockReduceT;
__shared__ typename BlockReduceT::TempStorage temp;
best = BlockReduceT(temp).Reduce(best, op);
if (block.thread_rank() == 0) {
out[out_idx] = best.index;
}
}
} // namespace cu
void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("ArgReduce::eval_gpu");
assert(inputs.size() == 1);
auto& in = inputs[0];
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
// Prepare the shapes, strides and axis arguments.
auto in_strides = in.strides();
auto shape = in.shape();
auto out_strides = out.strides();
auto axis_stride = in_strides[axis_];
size_t axis_size = shape[axis_];
if (out_strides.size() == in_strides.size()) {
out_strides.erase(out_strides.begin() + axis_);
}
in_strides.erase(in_strides.begin() + axis_);
shape.erase(shape.begin() + axis_);
size_t ndim = shape.size();
// ArgReduce.
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_REAL_TYPES_CHECKED(in.dtype(), "ArgReduce", CTYPE, {
using InType = cuda_type_t<CTYPE>;
constexpr uint32_t N_READS = 4;
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
dim3 block_dims{1, 1, BLOCK_DIM};
auto kernel = &cu::arg_reduce_general<
InType,
cu::ArgMax<InType>,
BLOCK_DIM,
N_READS>;
if (reduce_type_ == ArgReduce::ArgMin) {
kernel = &cu::arg_reduce_general<
InType,
cu::ArgMin<InType>,
BLOCK_DIM,
N_READS>;
}
kernel<<<num_blocks, block_dims, 0, stream>>>(
in.data<InType>(),
out.data<uint32_t>(),
const_param(shape),
const_param(in_strides),
const_param(out_strides),
ndim,
axis_stride,
axis_size);
});
});
});
}
} // namespace mlx::core

View File

@@ -0,0 +1,61 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/iterator_adaptor.h>
#include <thrust/iterator/iterator_facade.h>
namespace mlx::core::cu {
// RandomAccessIterator for strided access to array entries.
template <typename Iterator, typename Stride = int64_t>
class strided_iterator
: public thrust::
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
public:
using super_t =
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
using reference = typename super_t::reference;
using difference_type = typename super_t::difference_type;
__host__ __device__ strided_iterator(Iterator it, Stride stride)
: super_t(it), stride_(stride) {}
__host__ __device__ Stride stride() const {
return stride_;
}
private:
friend class thrust::iterator_core_access;
__host__ __device__ bool equal(const strided_iterator& other) const {
return this->base() == other.base();
}
__host__ __device__ void advance(difference_type n) {
this->base_reference() += n * stride_;
}
__host__ __device__ void increment() {
this->base_reference() += stride_;
}
__host__ __device__ void decrement() {
this->base_reference() -= stride_;
}
__host__ __device__ difference_type
distance_to(const strided_iterator& other) const {
const difference_type dist = other.base() - this->base();
_CCCL_ASSERT(
dist % stride() == 0,
"Underlying iterator difference must be divisible by the stride");
return dist / stride();
}
Stride stride_;
};
} // namespace mlx::core::cu

View File

@@ -15,6 +15,33 @@
namespace mlx::core {
// Helper macros for dispatch macros (see below).
#define MLX_INTERNAL_IF_CASE(DIM, BLOCK_DIM, ...) \
} \
else if (_num_threads <= DIM) { \
constexpr uint32_t BLOCK_DIM = DIM; \
__VA_ARGS__;
#define MLX_INTERNAL_IF_CASE_DIMS(NUM_THREADS, BLOCK_DIM, ...) \
{ \
uint32_t _num_threads = NUM_THREADS; \
if (false) { \
MLX_INTERNAL_IF_CASE(32, BLOCK_DIM, __VA_ARGS__) \
MLX_INTERNAL_IF_CASE(64, BLOCK_DIM, __VA_ARGS__) \
MLX_INTERNAL_IF_CASE(128, BLOCK_DIM, __VA_ARGS__) \
MLX_INTERNAL_IF_CASE(256, BLOCK_DIM, __VA_ARGS__) \
MLX_INTERNAL_IF_CASE(512, BLOCK_DIM, __VA_ARGS__) \
} else { \
constexpr uint32_t BLOCK_DIM = 1024; \
__VA_ARGS__; \
} \
}
// Some kernels use CUB which requires block_dim to be known at compile-time,
// use this macro to dispatch constexpr block_dim for the num_threads.
#define MLX_SWITCH_BLOCK_DIM(NUM_THREADS, BLOCK_DIM, ...) \
MLX_INTERNAL_IF_CASE_DIMS(NUM_THREADS, BLOCK_DIM, __VA_ARGS__)
// Maps CPU types to CUDA types.
template <typename T>
struct CTypeToCudaType {

View File

@@ -20,6 +20,10 @@ namespace mlx::core::cu {
// CUDA kernel utils
///////////////////////////////////////////////////////////////////////////////
// All existing NVIDIA hardware has a fixed 32 warp size. Though a built-in
// warpSize variable exists, using it would prevent compile-time optimizations.
#define WARP_SIZE 32
// To pass shape/strides to kernels via constant memory, their size must be
// known at compile time.
#define MAX_NDIM 8

View File

@@ -56,7 +56,6 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
NO_GPU(AddMM)
NO_GPU(ArgPartition)
NO_GPU(ArgReduce)
NO_GPU(ArgSort)
NO_GPU(BlockMaskedMM)
NO_GPU_MULTI(Compiled)