reduce binary size (#1952)

This commit is contained in:
Awni Hannun
2025-03-11 06:30:44 -07:00
committed by GitHub
parent 117e1355a2
commit 736a340478
16 changed files with 2145 additions and 2386 deletions

View File

@@ -3,12 +3,9 @@
#pragma once
#include <cassert>
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/primitives.h"
#include "mlx/backend/cpu/simd/simd.h"
@@ -152,218 +149,145 @@ void binary_op_dispatch_dims(
}
template <typename T, typename U, typename Op>
void binary_op(const array& a, const array& b, array& out) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
void binary_op(const array& a, const array& b, array& out, BinaryOpType bopt) {
// The full computation is scalar scalar so call the base op once
auto a_ptr = a.data<T>();
auto b_ptr = b.data<T>();
auto out_ptr = out.data<U>();
auto& encoder = cpu::get_command_encoder(out.primitive().stream());
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([bopt,
a_ptr,
b_ptr,
out_ptr,
a_data_size = a.data_size(),
b_data_size = b.data_size(),
size = a.size(),
shape = a.shape(),
a_strides = a.strides(),
b_strides = b.strides(),
strides = out.strides()]() mutable {
if (bopt == BinaryOpType::ScalarScalar) {
*out_ptr = Op{}(*a_ptr, *b_ptr);
return;
if (bopt == BinaryOpType::ScalarScalar) {
*out_ptr = Op{}(*a_ptr, *b_ptr);
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
ScalarVector<Op>{}(a_ptr, b_ptr, out_ptr, b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
VectorScalar<Op>{}(a_ptr, b_ptr, out_ptr, a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
VectorVector<Op>{}(a_ptr, b_ptr, out_ptr, a.size());
return;
}
// General computation so let's try to optimize
auto [new_shape, new_strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), out.strides()});
auto& a_strides = new_strides[0];
auto& b_strides = new_strides[1];
auto& strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a_strides);
auto b_rc_dim = leftmost_rc_dim(b_strides);
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
ScalarVector<Op>{}(a_ptr, b_ptr, out_ptr, b_data_size);
return;
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a_strides);
auto b_s_dim = leftmost_s_dim(b_strides);
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
VectorScalar<Op>{}(a_ptr, b_ptr, out_ptr, a_data_size);
return;
}
auto ndim = new_shape.size();
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
VectorVector<Op>{}(a_ptr, b_ptr, out_ptr, size);
return;
}
// General computation so let's try to optimize
auto [new_shape, new_strides] = collapse_contiguous_dims(
shape,
{std::move(a_strides), std::move(b_strides), std::move(strides)});
a_strides = new_strides[0];
b_strides = new_strides[1];
strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a_strides);
auto b_rc_dim = leftmost_rc_dim(b_strides);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a_strides);
auto b_s_dim = leftmost_s_dim(b_strides);
auto ndim = new_shape.size();
// Case 1: LxM and FxM where L and F are broadcastable and M is row
// Case 1: LxM and FxM where L and F are broadcastable and M is row
// contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
if (dim == 0 || strides[dim - 1] < 16) {
bopt = BinaryOpType::General;
dim = ndim;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
if (dim == 0 || strides[dim - 1] < 16) {
bopt = BinaryOpType::General;
dim = ndim;
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U, true, VectorVector<Op>>(
a_ptr,
b_ptr,
out_ptr,
dim,
size,
new_shape,
a_strides,
b_strides,
strides);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U, true, VectorScalar<Op>>(
a_ptr,
b_ptr,
out_ptr,
dim,
size,
new_shape,
a_strides,
b_strides,
strides);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U, true, ScalarVector<Op>>(
a_ptr,
b_ptr,
out_ptr,
dim,
size,
new_shape,
a_strides,
b_strides,
strides);
break;
default:
binary_op_dispatch_dims<T, U, false, Op>(
a_ptr,
b_ptr,
out_ptr,
dim,
size,
new_shape,
a_strides,
b_strides,
strides);
break;
}
});
}
template <typename T, typename Op>
void binary_op(const array& a, const array& b, array& out) {
binary_op<T, T, Op>(a, b, out);
}
template <typename T, typename Op>
void binary_op(const array& a, const array& b, array& out, Op op) {
binary_op<T, T, Op>(a, b, out);
}
template <typename Op>
void binary(const array& a, const array& b, array& out, Op op) {
switch (out.dtype()) {
case bool_:
binary_op<bool, Op>(a, b, out);
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U, true, VectorVector<Op>>(
a_ptr,
b_ptr,
out_ptr,
dim,
a.size(),
new_shape,
a_strides,
b_strides,
strides);
break;
case uint8:
binary_op<uint8_t, Op>(a, b, out);
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U, true, VectorScalar<Op>>(
a_ptr,
b_ptr,
out_ptr,
dim,
a.size(),
new_shape,
a_strides,
b_strides,
strides);
break;
case uint16:
binary_op<uint16_t, Op>(a, b, out);
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U, true, ScalarVector<Op>>(
a_ptr,
b_ptr,
out_ptr,
dim,
a.size(),
new_shape,
a_strides,
b_strides,
strides);
break;
case uint32:
binary_op<uint32_t, Op>(a, b, out);
break;
case uint64:
binary_op<uint64_t, Op>(a, b, out);
break;
case int8:
binary_op<int8_t, Op>(a, b, out);
break;
case int16:
binary_op<int16_t, Op>(a, b, out);
break;
case int32:
binary_op<int32_t, Op>(a, b, out);
break;
case int64:
binary_op<int64_t, Op>(a, b, out);
break;
case float16:
binary_op<float16_t, Op>(a, b, out);
break;
case float32:
binary_op<float, Op>(a, b, out);
break;
case float64:
binary_op<double, Op>(a, b, out);
break;
case bfloat16:
binary_op<bfloat16_t, Op>(a, b, out);
break;
case complex64:
binary_op<complex64_t, Op>(a, b, out);
default:
binary_op_dispatch_dims<T, U, false, Op>(
a_ptr,
b_ptr,
out_ptr,
dim,
a.size(),
new_shape,
a_strides,
b_strides,
strides);
break;
}
}
template <typename T, typename Op>
void binary_op(const array& a, const array& b, array& out, BinaryOpType bopt) {
binary_op<T, T, Op>(a, b, out, bopt);
}
} // namespace mlx::core