mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 07:58:14 +08:00 
			
		
		
		
	Enable cross_entropy loss to handle dense targets (#517)
* Enable cross_entropy loss to handle dense targets Dense targets means probabilities or one-hot encodings. * better shape check of weights * nits in docstring --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
		| @@ -31,9 +31,14 @@ def cross_entropy( | ||||
|     Computes the cross entropy loss. | ||||
|  | ||||
|     Args: | ||||
|         logits (array): The unnormalized predicted logits. | ||||
|         targets (array): The target values, as class indices. | ||||
|         weights (array, optional): Weights for each target. Default: ``None``. | ||||
|         logits (array): The unnormalized logits. | ||||
|         targets (array): The ground truth values. These can be class indices or | ||||
|             probabilities for each class. If the ``targets`` are class indices, | ||||
|             then ``targets`` shape should match the ``logits`` shape with | ||||
|             the ``axis`` dimension removed. If the ``targets`` are probabilities | ||||
|             (or one-hot encoded), then the ``targets`` shape should be the same as | ||||
|             the ``logits`` shape. | ||||
|         weights (array, optional): Optional weights for each target. Default: ``None``. | ||||
|         axis (int, optional): The axis over which to compute softmax. Default: ``-1``. | ||||
|         label_smoothing (float, optional): Label smoothing factor. Default: ``0``. | ||||
|         reduction (str, optional): Specifies the reduction to apply to the output: | ||||
| @@ -41,11 +46,46 @@ def cross_entropy( | ||||
|  | ||||
|     Returns: | ||||
|         array: The computed cross entropy loss. | ||||
|  | ||||
|     Examples: | ||||
|         >>> import mlx.core as mx | ||||
|         >>> import mlx.nn as nn | ||||
|         >>> | ||||
|         >>> # Class indices as targets | ||||
|         >>> logits = mx.array([[2.0, -1.0], [-1.0, 2.0]]) | ||||
|         >>> targets = mx.array([0, 1]) | ||||
|         >>> nn.losses.cross_entropy(logits, targets) | ||||
|         array([0.0485873, 0.0485873], dtype=float32) | ||||
|         >>> | ||||
|         >>> # Probabilities (or one-hot vectors) as targets | ||||
|         >>> logits = mx.array([[2.0, -1.0], [-1.0, 2.0]]) | ||||
|         >>> targets = mx.array([[0.9, 0.1], [0.1, 0.9]]) | ||||
|         >>> nn.losses.cross_entropy(logits, targets) | ||||
|         array([0.348587, 0.348587], dtype=float32) | ||||
|     """ | ||||
|     if label_smoothing < 0 or label_smoothing >= 1: | ||||
|         raise ValueError(f"Label smoothing must in [0, 1), got {label_smoothing}.") | ||||
|  | ||||
|     score = mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1) | ||||
|     # Whether targets are class indices or probabilities | ||||
|     targets_as_probs = targets.ndim == logits.ndim | ||||
|  | ||||
|     def _drop_dim(shape, axis): | ||||
|         shape.pop(axis) | ||||
|         return shape | ||||
|  | ||||
|     # Check shapes in two cases: targets as class indices and targets as probabilities | ||||
|     if (targets_as_probs and targets.shape != logits.shape) or ( | ||||
|         not targets_as_probs and targets.shape != _drop_dim(logits.shape, axis) | ||||
|     ): | ||||
|         raise ValueError( | ||||
|             f"Targets shape {targets.shape} does not match logits shape {logits.shape}." | ||||
|         ) | ||||
|  | ||||
|     if targets_as_probs: | ||||
|         score = mx.sum(logits * targets, axis=axis) | ||||
|     else: | ||||
|         score = mx.take_along_axis(logits, targets[..., None], axis).squeeze(-1) | ||||
|  | ||||
|     logsumexp_logits = mx.logsumexp(logits, axis=axis) | ||||
|     if label_smoothing > 0: | ||||
|         # Adjust the true class score with label smoothing | ||||
| @@ -62,10 +102,10 @@ def cross_entropy( | ||||
|  | ||||
|     # Apply weights if provided | ||||
|     if weights is not None: | ||||
|         if weights.shape != targets.shape: | ||||
|         if weights.shape != loss.shape: | ||||
|             raise ValueError( | ||||
|                 f"Weights with shape {weights.shape} is not the same as " | ||||
|                 f"targets with shape {targets.shape}." | ||||
|                 f"output loss with shape {loss.shape}." | ||||
|             ) | ||||
|         loss *= weights | ||||
|  | ||||
|   | ||||
| @@ -10,100 +10,61 @@ import numpy as np | ||||
|  | ||||
| class TestLosses(mlx_tests.MLXTestCase): | ||||
|     def test_cross_entropy(self): | ||||
|         # No weights, no label smoothing | ||||
|         logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]]) | ||||
|         targets = mx.array([0, 1]) | ||||
|         indices = mx.array([0, 1]) | ||||
|         expected = mx.array([0.0, 0.0]) | ||||
|         loss = nn.losses.cross_entropy(logits, indices, reduction="none") | ||||
|         self.assertTrue(mx.allclose(loss, expected)) | ||||
|  | ||||
|         # Test with reduction 'none' | ||||
|         losses_none = nn.losses.cross_entropy(logits, targets, reduction="none") | ||||
|         expected_none = mx.array([0.0, 0.0]) | ||||
|         self.assertTrue(mx.array_equal(losses_none, expected_none)) | ||||
|         probs = mx.array([[1.0, 0.0], [0.0, 1.0]]) | ||||
|         loss = nn.losses.cross_entropy(logits, probs, reduction="none") | ||||
|         self.assertTrue(mx.isnan(loss).all())  # produce NaNs, like PyTorch | ||||
|  | ||||
|         # Test with reduction 'mean' | ||||
|         losses_mean = nn.losses.cross_entropy(logits, targets, reduction="mean") | ||||
|         expected_mean = mx.mean(expected_none) | ||||
|         self.assertEqual(losses_mean, expected_mean) | ||||
|  | ||||
|         # Test with reduction 'sum' | ||||
|         losses_sum = nn.losses.cross_entropy(logits, targets, reduction="sum") | ||||
|         expected_sum = mx.sum(expected_none) | ||||
|         self.assertEqual(losses_sum, expected_sum) | ||||
|  | ||||
|         # Test cases with weights and no label smoothing | ||||
|         # With weights, no label smoothing | ||||
|         logits = mx.array([[2.0, -1.0], [-1.0, 2.0]]) | ||||
|         targets = mx.array([0, 1]) | ||||
|         indices = mx.array([0, 1]) | ||||
|         weights = mx.array([1.0, 2.0]) | ||||
|         expected = mx.array([0.04858735, 0.0971747]) | ||||
|         loss = nn.losses.cross_entropy( | ||||
|             logits, indices, weights=weights, reduction="none" | ||||
|         ) | ||||
|         self.assertTrue(mx.allclose(loss, expected)) | ||||
|  | ||||
|         # Reduction 'none' | ||||
|         losses_none = nn.losses.cross_entropy( | ||||
|             logits, | ||||
|             targets, | ||||
|             weights=weights, | ||||
|             reduction="none", | ||||
|         ) | ||||
|         expected_none = mx.array([0.04858735, 0.0971747])  # Calculated losses | ||||
|         self.assertTrue( | ||||
|             np.allclose(losses_none, expected_none, atol=1e-5), | ||||
|             "Test case failed for cross_entropy loss --reduction='none' --weights=[1.0, 2.0]", | ||||
|         ) | ||||
|         probs = mx.array([[1.0, 0.0], [0.0, 1.0]]) | ||||
|         loss = nn.losses.cross_entropy(logits, probs, weights=weights, reduction="none") | ||||
|         self.assertTrue(mx.allclose(loss, expected)) | ||||
|  | ||||
|         # Reduction 'mean' | ||||
|         losses_mean = nn.losses.cross_entropy( | ||||
|             logits, | ||||
|             targets, | ||||
|             weights=weights, | ||||
|             reduction="mean", | ||||
|         ) | ||||
|         expected_mean = mx.mean(expected_none) | ||||
|         self.assertTrue( | ||||
|             np.allclose(losses_mean, expected_mean, atol=1e-5), | ||||
|             "Test case failed for cross_entropy loss --reduction='mean' --weights=[1.0, 2.0]", | ||||
|         # No weights, with label smoothing | ||||
|         logits = mx.array([[2.0, -1.0], [-1.0, 2.0]]) | ||||
|         indices = mx.array([0, 1]) | ||||
|         expected = mx.array([0.498587, 0.498587]) | ||||
|         loss = nn.losses.cross_entropy( | ||||
|             logits, indices, label_smoothing=0.3, reduction="none" | ||||
|         ) | ||||
|         self.assertTrue(mx.allclose(loss, expected)) | ||||
|  | ||||
|         # Reduction 'sum' | ||||
|         losses_sum = nn.losses.cross_entropy( | ||||
|             logits, | ||||
|             targets, | ||||
|             weights=weights, | ||||
|             reduction="sum", | ||||
|         ) | ||||
|         expected_sum = mx.sum(expected_none) | ||||
|         self.assertTrue( | ||||
|             np.allclose(losses_sum, expected_sum, atol=1e-5), | ||||
|             "Test case failed for cross_entropy loss --reduction='sum' --weights=[1.0, 2.0]", | ||||
|         probs = mx.array([[1.0, 0.0], [0.0, 1.0]]) | ||||
|         loss = nn.losses.cross_entropy( | ||||
|             logits, probs, label_smoothing=0.3, reduction="none" | ||||
|         ) | ||||
|         self.assertTrue(mx.allclose(loss, expected)) | ||||
|  | ||||
|         # Test case with equal weights and label smoothing > 0 | ||||
|         logits = mx.array( | ||||
|             [[0, 0.2, 0.7, 0.1, 0], [0, 0.9, 0.2, 0.2, 1], [1, 0.2, 0.7, 0.9, 1]] | ||||
|         # With weights and label smoothing | ||||
|         logits = mx.array([[2.0, -1.0], [-1.0, 2.0]]) | ||||
|         indices = mx.array([0, 1]) | ||||
|         weights = mx.array([1.0, 2.0]) | ||||
|         expected = mx.array([0.49858734, 0.9971747]) | ||||
|         loss = nn.losses.cross_entropy( | ||||
|             logits, indices, weights=weights, label_smoothing=0.3, reduction="none" | ||||
|         ) | ||||
|         target = mx.array([2, 1, 0]) | ||||
|         self.assertTrue(mx.allclose(loss, expected)) | ||||
|  | ||||
|         losses_none = nn.losses.cross_entropy( | ||||
|             logits, target, label_smoothing=0.3, reduction="none" | ||||
|         ) | ||||
|         expected_none = mx.array([1.29693, 1.38617, 1.48176]) | ||||
|         self.assertTrue( | ||||
|             mx.allclose(expected_none, losses_none), | ||||
|             "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='none'", | ||||
|         ) | ||||
|  | ||||
|         expected_mean = mx.mean(expected_none) | ||||
|         losses_mean = nn.losses.cross_entropy( | ||||
|             logits, target, label_smoothing=0.3, reduction="mean" | ||||
|         ) | ||||
|         self.assertTrue( | ||||
|             mx.allclose(losses_mean, expected_mean), | ||||
|             "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='mean'", | ||||
|         ) | ||||
|  | ||||
|         expected_sum = mx.sum(expected_none) | ||||
|         losses_sum = nn.losses.cross_entropy( | ||||
|             logits, target, label_smoothing=0.3, reduction="sum" | ||||
|         ) | ||||
|         self.assertTrue( | ||||
|             mx.allclose(losses_sum, expected_sum), | ||||
|             "Test case failed for cross_entropy --label_smoothing=0.3 --reduction='sum'", | ||||
|         probs = mx.array([[1.0, 0.0], [0.0, 1.0]]) | ||||
|         loss = nn.losses.cross_entropy( | ||||
|             logits, probs, weights=weights, label_smoothing=0.3, reduction="none" | ||||
|         ) | ||||
|         self.assertTrue(mx.allclose(loss, expected)) | ||||
|  | ||||
|     def test_binary_cross_entropy(self): | ||||
|         def _test_logits_as_inputs(): | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 AtomicVar
					AtomicVar