mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 07:58:14 +08:00 
			
		
		
		
	| @@ -30,6 +30,16 @@ MLX is also available on conda-forge. To install MLX with conda do: | ||||
|  | ||||
|    conda install conda-forge::mlx | ||||
|  | ||||
| CUDA | ||||
| ^^^^ | ||||
|  | ||||
| MLX has a CUDA backend which you can use on any Linux platform with CUDA 12 | ||||
| and SM 7.0 (Volta) and up. To install MLX with CUDA support, run: | ||||
|  | ||||
| .. code-block:: shell | ||||
|  | ||||
|     pip install mlx-cuda | ||||
|  | ||||
|  | ||||
| Troubleshooting | ||||
| ^^^^^^^^^^^^^^^ | ||||
| @@ -65,6 +75,8 @@ Build Requirements | ||||
| Python API | ||||
| ^^^^^^^^^^ | ||||
|  | ||||
| .. _python install: | ||||
|  | ||||
| To build and install the MLX python library from source, first, clone MLX from | ||||
| `its GitHub repo <https://github.com/ml-explore/mlx>`_: | ||||
|  | ||||
| @@ -107,6 +119,8 @@ IDE: | ||||
| C++ API | ||||
| ^^^^^^^ | ||||
|  | ||||
| .. _cpp install: | ||||
|  | ||||
| Currently, MLX must be built and installed from source. | ||||
|  | ||||
| Similarly to the python library, to build and install the MLX C++ library start | ||||
| @@ -185,6 +199,7 @@ should point to the path to the built metal library. | ||||
|  | ||||
|       xcrun -sdk macosx --show-sdk-version | ||||
|  | ||||
|  | ||||
| Binary Size Minimization | ||||
| ~~~~~~~~~~~~~~~~~~~~~~~~ | ||||
|  | ||||
| @@ -213,6 +228,50 @@ be anwywhere from a few hundred millisecond to a few seconds depending on the | ||||
| application. Once a kernel is compiled, it will be cached by the system. The | ||||
| Metal kernel cache persists across reboots. | ||||
|  | ||||
| Linux | ||||
| ^^^^^ | ||||
|  | ||||
| To build from source on Linux (CPU only), install the BLAS and LAPACK headers. | ||||
| For example on Ubuntu, run the following: | ||||
|  | ||||
| .. code-block:: shell | ||||
|  | ||||
|    apt-get update -y | ||||
|    apt-get install libblas-dev liblapack-dev liblapacke-dev -y | ||||
|  | ||||
| From here follow the instructions to install either the :ref:`Python <python | ||||
| install>` or :ref:`C++ <cpp install>` APIs. | ||||
|  | ||||
| CUDA | ||||
| ^^^^ | ||||
|  | ||||
| To build from source on Linux with CUDA, install the BLAS and LAPACK headers | ||||
| and the CUDA toolkit. For example on Ubuntu, run the following: | ||||
|  | ||||
| .. code-block:: shell | ||||
|  | ||||
|    wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb | ||||
|    dpkg -i cuda-keyring_1.1-1_all.deb | ||||
|    apt-get update -y | ||||
|    apt-get -y install cuda-toolkit-12-9 | ||||
|    apt-get install libblas-dev liblapack-dev liblapacke-dev -y | ||||
|  | ||||
|  | ||||
| When building either the Python or C++ APIs make sure to pass the cmake flag | ||||
| ``MLX_BUILD_CUDA=ON``. For example, to build the Python API run: | ||||
|  | ||||
| .. code-block:: shell | ||||
|  | ||||
|   CMAKE_BUILD_PARALLEL_LEVEL=8 CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]" | ||||
|  | ||||
| To build the C++ package run: | ||||
|  | ||||
| .. code-block:: shell | ||||
|  | ||||
|    mkdir -p build && cd build | ||||
|    cmake .. -DMLX_BUILD_CUDA=ON && make -j | ||||
|  | ||||
|  | ||||
| Troubleshooting | ||||
| ^^^^^^^^^^^^^^^ | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Awni Hannun
					Awni Hannun