mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-17 17:28:10 +08:00
Convolution update (#651)
* Init steel conv and update Conv primitive * Update slow CPU implementation to support flipping and input dilation winograd conv routing Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
@@ -3081,7 +3081,7 @@ void init_ops(py::module_& m) {
|
||||
py::kw_only(),
|
||||
"stream"_a = none,
|
||||
R"pbdoc(
|
||||
conv2d(input: array, weight: array, /, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: Union[int, Tuple[int, int]] = 1, *, stream: Union[None, Stream, Device] = None) -> array
|
||||
conv2d(input: array, weight: array, /, stride: Union[int, Tuple[int, int]] = 1, padding: Union[int, Tuple[int, int]] = 0, dilation: Union[int, Tuple[int, int]] = 1, groups: int = 1, *, stream: Union[None, Stream, Device] = None) -> array
|
||||
|
||||
2D convolution over an input with several channels
|
||||
|
||||
@@ -3105,6 +3105,114 @@ void init_ops(py::module_& m) {
|
||||
array: The convolved array.
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"conv_general",
|
||||
[](const array& input,
|
||||
const array& weight,
|
||||
const std::variant<int, std::vector<int>>& stride,
|
||||
const std::variant<
|
||||
int,
|
||||
std::vector<int>,
|
||||
std::pair<std::vector<int>, std::vector<int>>>& padding,
|
||||
const std::variant<int, std::vector<int>>& kernel_dilation,
|
||||
const std::variant<int, std::vector<int>>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
StreamOrDevice s) {
|
||||
std::vector<int> stride_vec;
|
||||
std::vector<int> padding_lo_vec;
|
||||
std::vector<int> padding_hi_vec;
|
||||
std::vector<int> kernel_dilation_vec;
|
||||
std::vector<int> input_dilation_vec;
|
||||
|
||||
if (auto pv = std::get_if<int>(&stride); pv) {
|
||||
stride_vec.push_back(*pv);
|
||||
} else {
|
||||
stride_vec = std::get<std::vector<int>>(stride);
|
||||
}
|
||||
|
||||
if (auto pv = std::get_if<int>(&padding); pv) {
|
||||
padding_lo_vec.push_back(*pv);
|
||||
padding_hi_vec.push_back(*pv);
|
||||
} else if (auto pv = std::get_if<std::vector<int>>(&padding); pv) {
|
||||
padding_lo_vec = *pv;
|
||||
padding_hi_vec = *pv;
|
||||
} else {
|
||||
auto [pl, ph] =
|
||||
std::get<std::pair<std::vector<int>, std::vector<int>>>(padding);
|
||||
padding_lo_vec = pl;
|
||||
padding_hi_vec = ph;
|
||||
}
|
||||
|
||||
if (auto pv = std::get_if<int>(&kernel_dilation); pv) {
|
||||
kernel_dilation_vec.push_back(*pv);
|
||||
} else {
|
||||
kernel_dilation_vec = std::get<std::vector<int>>(kernel_dilation);
|
||||
}
|
||||
|
||||
if (auto pv = std::get_if<int>(&input_dilation); pv) {
|
||||
input_dilation_vec.push_back(*pv);
|
||||
} else {
|
||||
input_dilation_vec = std::get<std::vector<int>>(input_dilation);
|
||||
}
|
||||
|
||||
return conv_general(
|
||||
/* const array& input = */ input,
|
||||
/* const array& weight = */ weight,
|
||||
/* std::vector<int> stride = */ stride_vec,
|
||||
/* std::vector<int> padding_lo = */ padding_lo_vec,
|
||||
/* std::vector<int> padding_hi = */ padding_lo_vec,
|
||||
/* std::vector<int> kernel_dilation = */ kernel_dilation_vec,
|
||||
/* std::vector<int> input_dilation = */ input_dilation_vec,
|
||||
/* int groups = */ groups,
|
||||
/* bool flip = */ flip,
|
||||
s);
|
||||
},
|
||||
"input"_a,
|
||||
"weight"_a,
|
||||
py::pos_only(),
|
||||
"stride"_a = 1,
|
||||
"padding"_a = 0,
|
||||
"kernel_dilation"_a = 1,
|
||||
"input_dilation"_a = 1,
|
||||
"groups"_a = 1,
|
||||
"flip"_a = false,
|
||||
py::kw_only(),
|
||||
"stream"_a = none,
|
||||
R"pbdoc(
|
||||
conv_general(input: array, weight: array, /, stride: Union[int, List[int]] = 1, padding: Union[int, List[int], Tuple[List[int], List[int]]] = 0, kernel_dilation: Union[int, List[int]] = 1, input_dilation: Union[int, List[int]] = 1, groups: int = 1, flip: bool = false, *, stream: Union[None, Stream, Device] = None) -> array
|
||||
|
||||
General convolution over an input with several channels
|
||||
|
||||
.. note::
|
||||
|
||||
* Only 1d and 2d convolutions are supported at the moment
|
||||
* the default ``groups=1`` is currently supported.
|
||||
|
||||
Args:
|
||||
input (array): Input array of shape ``(N, ..., C_in)``
|
||||
weight (array): Weight array of shape ``(C_out, ..., C_in)``
|
||||
stride (int or list(int), optional): :obj:`list` with kernel strides.
|
||||
All spatial dimensions get the same stride if
|
||||
only one number is specified. Default: ``1``.
|
||||
padding (int, list(int), or tuple(list(int), list(int)), optional):
|
||||
:obj:`list` with input padding. All spatial dimensions get the same
|
||||
padding if only one number is specified. Default: ``0``.
|
||||
kernel_dilation (int or list(int), optional): :obj:`list` with
|
||||
kernel dilation. All spatial dimensions get the same dilation
|
||||
if only one number is specified. Default: ``1``
|
||||
input_dilation (int or list(int), optional): :obj:`list` with
|
||||
input dilation. All spatial dimensions get the same dilation
|
||||
if only one number is specified. Default: ``1``
|
||||
groups (int, optional): Input feature groups. Default: ``1``.
|
||||
flip (bool, optional): Flip the order in which the spatial dimensions of
|
||||
the weights are processed. Performs the cross-correlation operator when
|
||||
``flip`` is ``False`` and the convolution operator otherwise.
|
||||
Default: ``False``.
|
||||
|
||||
Returns:
|
||||
array: The convolved array.
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"save",
|
||||
&mlx_save_helper,
|
||||
"file"_a,
|
||||
|
Reference in New Issue
Block a user