Update GEMM (#424)

* Organize and collect metal subroutine templates and elements in `metal/kernels/steel/`
* Update gemm elements for better performance 
* Add split-K specialization for gemm
* Add `addmm` primitive, op and bindings for fused matmul and bias addition 
* Update tests and benchmarks as needed
This commit is contained in:
Jagrit Digani
2024-01-17 12:42:39 -08:00
committed by GitHub
parent 556cdf0e06
commit 78102a47ad
30 changed files with 2361 additions and 646 deletions

View File

@@ -8,6 +8,7 @@
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/steel/host.h"
#include "mlx/backend/metal/matmul.h"
#include "mlx/backend/metal/mps/gemm.h"
#include "mlx/backend/metal/utils.h"
@@ -16,6 +17,10 @@
namespace mlx::core {
///////////////////////////////////////////////////////////////////////////////
// MPS Matmul fallback
///////////////////////////////////////////////////////////////////////////////
namespace {
bool use_mps() {
@@ -46,7 +51,9 @@ inline void mps_matmul(
int ldb,
bool transpose_a,
bool transpose_b,
std::vector<array>& copies) {
std::vector<array>& copies,
float alpha = 1.0f,
float beta = 0.0f) {
MPS::DataType mps_dtype = MPS::DataTypeFloat32;
if (out.dtype() == float16) {
@@ -121,7 +128,7 @@ inline void mps_matmul(
auto out_mat = MPS::Matrix::alloc()->init(out_buf, out_desc);
auto kernel = MPS::MatrixMultiplication::alloc()->init(
d.mtl_device(), transpose_a, transpose_b, M, N, K, 1.0, 0.0);
d.mtl_device(), transpose_a, transpose_b, M, N, K, alpha, beta);
auto command_buffer = d.get_command_buffer(s.index);
kernel->setBatchSize(batch_size_out);
@@ -162,7 +169,7 @@ inline void mps_matmul(
auto out_mat = MPS::Matrix::alloc()->init(out_buf, out_desc);
auto kernel = MPS::MatrixMultiplication::alloc()->init(
d.mtl_device(), transpose_a, transpose_b, M, N, K, 1.0, 0.0);
d.mtl_device(), transpose_a, transpose_b, M, N, K, alpha, beta);
auto command_buffer = d.get_command_buffer(s.index);
for (int i = 0; i < batch_size_out; ++i) {
@@ -186,7 +193,11 @@ inline void mps_matmul(
} // namespace
void mlx_matmul(
///////////////////////////////////////////////////////////////////////////////
// Steel matmul fallback
///////////////////////////////////////////////////////////////////////////////
void steel_matmul(
const Stream& s,
metal::Device& d,
const array& a,
@@ -201,6 +212,15 @@ void mlx_matmul(
bool transpose_a,
bool transpose_b,
std::vector<array>& copies) {
using namespace mlx::steel;
// Coalesce (B, M, K) X (K, N) to (B*M, K) X (K, N)
if (batch_size_out > 1 && !transpose_a &&
a.data_size() == batch_size_out * M * K && b.size() == K * N) {
M = M * batch_size_out;
batch_size_out = 1;
}
// Account for batch sizes and basic broadcasting
int batch_size_a = a.data_size() / (M * K);
int batch_size_b = b.data_size() / (K * N);
@@ -209,11 +229,108 @@ void mlx_matmul(
int matrix_stride_b = (batch_size_b == 1) ? 0 : K * N;
int matrix_stride_out = M * N;
/////////////////////////////////////////////////////////////////////////////
// Split K specialization
int _tm = M / 16;
int _tn = N / 16;
int _tk = K / 16;
if (batch_size_out == 1 && (_tm * _tn) <= 32 && _tk >= 8) {
int bm = M < 40 ? 16 : 32;
int bn = N < 40 ? 16 : 32;
int bk = 16;
int wm = 2, wn = 2;
int split_k_partitions =
_tk < 16 ? 2 : (_tk < 32 ? 4 : (_tk < 64 ? 8 : 16));
int split_k_partition_stride = M * N;
int gemm_k_iterations = (K / bk) / split_k_partitions;
int split_k_partition_size = gemm_k_iterations * bk;
array C_split({split_k_partitions, M, N}, float32, nullptr, {});
C_split.set_data(allocator::malloc_or_wait(C_split.nbytes()));
copies.push_back(C_split);
std::ostringstream kname;
kname << "steel_gemm_splitk_" << (transpose_a ? 't' : 'n')
<< (transpose_b ? 't' : 'n') << "_" << type_to_name(a) << "_"
<< type_to_name(C_split) << "_bm" << bm << "_bn" << bn << "_bk" << bk
<< "_wm" << wm << "_wn" << wn << "_MN_"
<< ((M % bm == 0 && N % bn == 0) ? "t" : "n") << "aligned"
<< "_K_" << ((K % bk == 0) ? "t" : "n") << "aligned";
// Encode and dispatch gemm kernel
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int tn = (N + bn - 1) / bn;
int tm = (M + bm - 1) / bm;
GEMMSpiltKParams params{
M,
N,
K,
lda,
ldb,
N,
tn,
tm,
split_k_partitions,
split_k_partition_stride,
split_k_partition_size,
gemm_k_iterations};
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(tn, tm, split_k_partitions);
set_array_buffer(compute_encoder, a, 0);
set_array_buffer(compute_encoder, b, 1);
set_array_buffer(compute_encoder, C_split, 2);
compute_encoder->setBytes(&params, sizeof(GEMMSpiltKParams), 3);
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
// Do accum kernel
{
auto c_split_buf =
static_cast<const MTL::Resource*>(C_split.buffer().ptr());
const class MTL::Resource* const resources[1] = {c_split_buf};
compute_encoder->memoryBarrier(resources, 1);
auto kernel = d.get_kernel(
"steel_gemm_splitk_accum_" + type_to_name(out) + "_" +
type_to_name(C_split));
compute_encoder->setComputePipelineState(kernel);
// Set the arguments for the kernel
set_array_buffer(compute_encoder, C_split, 0);
set_array_buffer(compute_encoder, out, 1);
compute_encoder->setBytes(&split_k_partitions, sizeof(int), 2);
compute_encoder->setBytes(&split_k_partition_stride, sizeof(int), 3);
compute_encoder->setBytes(&N, sizeof(int), 4);
// Launch enough thread groups for each output
MTL::Size grid_dims = MTL::Size(N, M, 1);
MTL::Size group_dims = MTL::Size(std::min(1024, N * M), 1, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
d.get_command_buffer(s.index)->addCompletedHandler(
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
return;
}
/////////////////////////////////////////////////////////////////////////////
// Regular kernel dispatch
// Determine dispatch kernel
int bm = 32, bn = 32, bk = 16;
int wm = 2, wn = 2;
if ((size_t)batch_size_out * M * N >= 2ul << 20) {
if ((size_t)batch_size_out * M * N >= 1ul << 20) {
if (!transpose_a && transpose_b) {
bm = 64;
bn = (out.dtype() == float32) ? 64 : 32;
@@ -224,10 +341,12 @@ void mlx_matmul(
}
}
// Prepare kernel name
std::ostringstream kname;
kname << "gemm_" << (transpose_a ? 't' : 'n') << (transpose_b ? 't' : 'n')
<< "_" << type_to_name(a) << "_" << type_to_name(out) << "_bm" << bm
<< "_bn" << bn << "_bk" << bk << "_wm" << wm << "_wn" << wn << "_MN_"
kname << "steel_gemm_" << (transpose_a ? 't' : 'n')
<< (transpose_b ? 't' : 'n') << "_" << type_to_name(a) << "_"
<< type_to_name(out) << "_bm" << bm << "_bn" << bn << "_bk" << bk
<< "_wm" << wm << "_wn" << wn << "_MN_"
<< ((M % bm == 0 && N % bn == 0) ? "t" : "n") << "aligned"
<< "_K_" << ((K % bk == 0) ? "t" : "n") << "aligned";
@@ -236,34 +355,55 @@ void mlx_matmul(
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
// Use problem size to determine threadblock swizzle
int tn = (N + bn - 1) / bn;
int tm = (M + bm - 1) / bm;
// TODO: Explore device-based tuning for swizzle
int swizzle_log = 0; // tm >= 6 ? 3 : (tm <= 3 ? 0 : 2);
// Prepare steel matmul params
GEMMParams params{
M,
N,
K,
lda,
ldb,
N,
tn,
tm,
matrix_stride_a,
matrix_stride_b,
matrix_stride_out,
swizzle_log,
(K / bk)};
// Prepare launch grid params
int tile = 1 << swizzle_log;
tm = (tm + tile - 1) / tile;
tn = tn * tile;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(tn, tm, batch_size_out);
// Launch only 1 kernel in the case of simple batching / broadcasting
if (batch_size_out == std::max(batch_size_a, batch_size_b) &&
(batch_size_a == batch_size_b ||
std::min(batch_size_a, batch_size_b) == 1)) {
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims =
MTL::Size((N + bn - 1) / bn, (M + bm - 1) / bm, batch_size_out);
set_array_buffer(compute_encoder, a, 0);
set_array_buffer(compute_encoder, b, 1);
set_array_buffer(compute_encoder, out, 2);
compute_encoder->setBytes(&M, sizeof(int), 3);
compute_encoder->setBytes(&N, sizeof(int), 4);
compute_encoder->setBytes(&K, sizeof(int), 5);
compute_encoder->setBytes(&matrix_stride_a, sizeof(int), 6);
compute_encoder->setBytes(&matrix_stride_b, sizeof(int), 7);
compute_encoder->setBytes(&matrix_stride_out, sizeof(int), 8);
compute_encoder->setBytes(&params, sizeof(GEMMParams), 3);
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
} else { // Other launch kernels with set offsets
} else { // Otherwise launch kernels with set offsets
MTL::Size grid_dims_single = MTL::Size(tn, tm, 1);
for (int i = 0; i < batch_size_out; ++i) {
auto a_off = elem_to_loc(M * K * i, a.shape(), a.strides());
auto b_off = elem_to_loc(K * N * i, b.shape(), b.strides());
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size((N + bn - 1) / bn, (M + bm - 1) / bm, 1);
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
auto b_buf = static_cast<const MTL::Buffer*>(b.buffer().ptr());
auto out_buf = static_cast<const MTL::Buffer*>(out.buffer().ptr());
@@ -272,13 +412,8 @@ void mlx_matmul(
compute_encoder->setBuffer(b_buf, b_off * b.itemsize(), 1);
compute_encoder->setBuffer(out_buf, i * M * N * out.itemsize(), 2);
compute_encoder->setBytes(&M, sizeof(int), 3);
compute_encoder->setBytes(&N, sizeof(int), 4);
compute_encoder->setBytes(&K, sizeof(int), 5);
compute_encoder->setBytes(&matrix_stride_a, sizeof(int), 6);
compute_encoder->setBytes(&matrix_stride_b, sizeof(int), 7);
compute_encoder->setBytes(&matrix_stride_out, sizeof(int), 8);
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
compute_encoder->setBytes(&params, sizeof(GEMMParams), 3);
compute_encoder->dispatchThreadgroups(grid_dims_single, group_dims);
}
}
@@ -300,6 +435,9 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& a_pre = inputs[0];
auto& b_pre = inputs[1];
/////////////////////////////////////////////////////////////////////////////
// Init checks and prep
// Keep a vector with copies to be cleared in the completed buffer to release
// the arrays
std::vector<array> copies;
@@ -328,6 +466,9 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
auto batch_size_out = out.size() / (M * N);
/////////////////////////////////////////////////////////////////////////////
// Gemv specialization
// Route to gemv if needed
if (std::min(M, N) == 1) {
// Collect problem info
@@ -433,10 +574,13 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
return;
}
d.end_encoding(s.index);
/////////////////////////////////////////////////////////////////////////////
// Gemm specialization
if (use_mps()) {
mps_matmul(
d.end_encoding(s.index);
return mps_matmul(
s,
d,
a,
@@ -451,10 +595,9 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
a_transposed,
b_transposed,
copies);
return;
}
mlx_matmul(
return steel_matmul(
s,
d,
a,
@@ -471,4 +614,266 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
copies);
}
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
if (!is_floating_point(out.dtype())) {
throw std::runtime_error(
"[matmul] Does not yet support non-floating point types.");
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto& s = stream();
auto& d = metal::device(s.device);
auto& a_pre = inputs[0];
auto& b_pre = inputs[1];
auto& c_pre = inputs[2];
/////////////////////////////////////////////////////////////////////////////
// Init checks and prep
// Keep a vector with copies to be cleared in the completed buffer to release
// the arrays
std::vector<array> copies;
auto check_transpose = [&copies, &s](const array& arr) {
auto stx = arr.strides()[arr.ndim() - 2];
auto sty = arr.strides()[arr.ndim() - 1];
if (stx == arr.shape(-1) && sty == 1) {
return std::make_tuple(false, stx, arr);
} else if (stx == 1 && sty == arr.shape(-2)) {
return std::make_tuple(true, sty, arr);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
size_t stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
}
};
auto [transpose_a, a_cols, a] = check_transpose(a_pre);
auto [transpose_b, b_cols, b] = check_transpose(b_pre);
int M = a.shape(-2);
int N = b.shape(-1);
int K = a.shape(-1);
auto batch_size_out = out.size() / (M * N);
array c = c_pre;
int ldc = c.strides()[c.ndim() - 2];
int fdc = c.strides()[c.ndim() - 1];
int matrix_stride_c = c.ndim() <= 2 ? 0 : c.strides()[c.ndim() - 3];
int lda = a_cols;
int ldb = b_cols;
using namespace mlx::steel;
// Account for batch sizes and basic broadcasting
int batch_size_a = a.data_size() / (M * K);
int batch_size_b = b.data_size() / (K * N);
int matrix_stride_a = (batch_size_a == 1) ? 0 : M * K;
int matrix_stride_b = (batch_size_b == 1) ? 0 : K * N;
int matrix_stride_out = M * N;
int _tm = M / 16;
int _tn = N / 16;
int _tk = K / 16;
/////////////////////////////////////////////////////////////////////////////
// Split K specialization
if (batch_size_out == 1 && (_tm * _tn) <= 32 && _tk >= 8) {
int bm = M < 40 ? 16 : 32;
int bn = N < 40 ? 16 : 32;
int bk = 16;
int wm = 2, wn = 2;
int split_k_partitions =
_tk < 16 ? 2 : (_tk < 32 ? 4 : (_tk < 64 ? 8 : 16));
int split_k_partition_stride = M * N;
int gemm_k_iterations = (K / bk) / split_k_partitions;
int split_k_partition_size = gemm_k_iterations * bk;
array C_split({split_k_partitions, M, N}, float32, nullptr, {});
C_split.set_data(allocator::malloc_or_wait(C_split.nbytes()));
copies.push_back(C_split);
std::ostringstream kname;
kname << "steel_gemm_splitk_" << (transpose_a ? 't' : 'n')
<< (transpose_b ? 't' : 'n') << "_" << type_to_name(a) << "_"
<< type_to_name(C_split) << "_bm" << bm << "_bn" << bn << "_bk" << bk
<< "_wm" << wm << "_wn" << wn << "_MN_"
<< ((M % bm == 0 && N % bn == 0) ? "t" : "n") << "aligned"
<< "_K_" << ((K % bk == 0) ? "t" : "n") << "aligned";
// Encode and dispatch gemm kernel
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int tn = (N + bn - 1) / bn;
int tm = (M + bm - 1) / bm;
GEMMSpiltKParams params{
M,
N,
K,
lda,
ldb,
N,
tn,
tm,
split_k_partitions,
split_k_partition_stride,
split_k_partition_size,
gemm_k_iterations};
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(tn, tm, split_k_partitions);
set_array_buffer(compute_encoder, a, 0);
set_array_buffer(compute_encoder, b, 1);
set_array_buffer(compute_encoder, C_split, 2);
compute_encoder->setBytes(&params, sizeof(GEMMSpiltKParams), 3);
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
// Do accum kernel
{
auto kernel = d.get_kernel(
"steel_gemm_splitk_accum_" + type_to_name(out) + "_" +
type_to_name(C_split) + "_axpby");
compute_encoder->setComputePipelineState(kernel);
// Set the arguments for the kernel
set_array_buffer(compute_encoder, C_split, 0);
set_array_buffer(compute_encoder, out, 1);
compute_encoder->setBytes(&split_k_partitions, sizeof(int), 2);
compute_encoder->setBytes(&split_k_partition_stride, sizeof(int), 3);
compute_encoder->setBytes(&N, sizeof(int), 4);
set_array_buffer(compute_encoder, c, 5);
compute_encoder->setBytes(&ldc, sizeof(int), 6);
compute_encoder->setBytes(&fdc, sizeof(int), 7);
compute_encoder->setBytes(&alpha_, sizeof(float), 8);
compute_encoder->setBytes(&beta_, sizeof(float), 9);
// Launch enough thread groups for each output
MTL::Size grid_dims = MTL::Size(N, M, 1);
MTL::Size group_dims = MTL::Size(std::min(1024, N * M), 1, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
d.get_command_buffer(s.index)->addCompletedHandler(
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
return;
}
/////////////////////////////////////////////////////////////////////////////
// Regular addmm dispatch
// Determine dispatch kernel
int bm = 32, bn = 32, bk = 16;
int wm = 2, wn = 2;
if ((size_t)batch_size_out * M * N >= 1ul << 20) {
if (!transpose_a && transpose_b) {
bm = 64;
bn = (out.dtype() == float32) ? 64 : 32;
bk = (out.dtype() == float32) ? 16 : 32;
} else {
bm = 64;
bn = 64;
}
}
std::ostringstream kname;
kname << "steel_addmm_" << (transpose_a ? 't' : 'n')
<< (transpose_b ? 't' : 'n') << "_" << type_to_name(a) << "_"
<< type_to_name(out) << "_bm" << bm << "_bn" << bn << "_bk" << bk
<< "_wm" << wm << "_wn" << wn << "_MN_"
<< ((M % bm == 0 && N % bn == 0) ? "t" : "n") << "aligned"
<< "_K_" << ((K % bk == 0) ? "t" : "n") << "aligned"
<< ((alpha_ == 1. && beta_ == 1.) ? "_add" : "_axpby");
// Encode and dispatch kernel
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int tn = (N + bn - 1) / bn;
int tm = (M + bm - 1) / bm;
// TODO: Explore device-based tuning for swizzle
int swizzle_log = 0; // tm >= 6 ? 3 : (tm <= 3 ? 0 : 2);
GEMMAddMMParams params{
M,
N,
K,
lda,
ldb,
ldc,
N,
tn,
tm,
matrix_stride_a,
matrix_stride_b,
matrix_stride_c,
matrix_stride_out,
swizzle_log,
(K / bk),
alpha_,
beta_,
fdc};
int tile = 1 << swizzle_log;
tm = (tm + tile - 1) / tile;
tn = tn * tile;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(tn, tm, batch_size_out);
// Launch only 1 kernel in the case of simple batching / broadcasting
if (batch_size_out == std::max(batch_size_a, batch_size_b) &&
(batch_size_a == batch_size_b ||
std::min(batch_size_a, batch_size_b) == 1)) {
set_array_buffer(compute_encoder, a, 0);
set_array_buffer(compute_encoder, b, 1);
set_array_buffer(compute_encoder, c, 2);
set_array_buffer(compute_encoder, out, 3);
compute_encoder->setBytes(&params, sizeof(GEMMAddMMParams), 4);
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
} else { // Otherwise launch kernels with set offsets
MTL::Size grid_dims_single = MTL::Size(tn, tm, 1);
for (int i = 0; i < batch_size_out; ++i) {
auto a_off = elem_to_loc(M * K * i, a.shape(), a.strides());
auto b_off = elem_to_loc(K * N * i, b.shape(), b.strides());
auto c_off = elem_to_loc(M * N * i, c.shape(), c.strides());
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
auto b_buf = static_cast<const MTL::Buffer*>(b.buffer().ptr());
auto c_buf = static_cast<const MTL::Buffer*>(c.buffer().ptr());
auto out_buf = static_cast<const MTL::Buffer*>(out.buffer().ptr());
compute_encoder->setBuffer(a_buf, a_off * a.itemsize(), 0);
compute_encoder->setBuffer(b_buf, b_off * b.itemsize(), 1);
compute_encoder->setBuffer(c_buf, c_off * c.itemsize(), 2);
compute_encoder->setBuffer(out_buf, i * M * N * out.itemsize(), 3);
compute_encoder->setBytes(&params, sizeof(GEMMAddMMParams), 4);
compute_encoder->dispatchThreadgroups(grid_dims_single, group_dims);
}
}
d.get_command_buffer(s.index)->addCompletedHandler(
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
return;
}
} // namespace mlx::core