Merge branch 'ml-explore:main' into adding-Muon-optimizer

This commit is contained in:
Gökdeniz Gülmez
2025-07-16 21:58:17 +02:00
committed by GitHub
23 changed files with 78 additions and 67 deletions

View File

@@ -97,7 +97,8 @@ jobs:
command: |
python -m unittest discover python/tests -v
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- run:
name: Build CPP only
command: |
@@ -156,7 +157,8 @@ jobs:
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- run:
name: Build example extension
command: |

View File

@@ -20,7 +20,7 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
// The decomposition is computed in place, so just copy the input to the
// output.
copy(
copy_cpu(
a,
factor,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -883,7 +883,7 @@ void explicit_gemm_conv_1D_cpu(
// Fill with zeros
std::vector<array> temps;
temps.push_back(array(0, conv_dtype));
copy(temps.back(), in_padded, CopyType::Scalar, stream);
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1];
@@ -895,7 +895,7 @@ void explicit_gemm_conv_1D_cpu(
in_padded_slice.size(),
data_offset);
// Copy input values into the slice
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
temps.push_back(in_padded_slice);
// Make strided view
@@ -920,7 +920,7 @@ void explicit_gemm_conv_1D_cpu(
// Materialize strided view
Shape strided_reshape = {N * oH, wH * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General, stream);
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
@@ -938,13 +938,13 @@ void explicit_gemm_conv_1D_cpu(
wt.size(),
0);
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
copy(wt_transpose, gemm_wt, CopyType::General, stream);
copy_cpu(wt_transpose, gemm_wt, CopyType::General, stream);
temps.push_back(gemm_wt);
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy(wt, gemm_wt, ctype, stream);
copy_cpu(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
@@ -991,7 +991,7 @@ void explicit_gemm_conv_1D_cpu(
// Copy results if needed
if (out.dtype() != float32) {
copy_inplace(gemm_out, out, CopyType::Vector, stream);
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}
@@ -1029,7 +1029,7 @@ void explicit_gemm_conv_2D_cpu(
// Fill with zeros
std::vector<array> temps;
temps.push_back(array(0, conv_dtype));
copy(temps.back(), in_padded, CopyType::Scalar, stream);
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
@@ -1044,7 +1044,7 @@ void explicit_gemm_conv_2D_cpu(
temps.push_back(in_padded_slice);
// Copy input values into the slice
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
// Make strided view
Shape strided_shape = {N, oH, oW, wH, wW, C};
@@ -1065,7 +1065,7 @@ void explicit_gemm_conv_2D_cpu(
// Materialize strided view
Shape strided_reshape = {N * oH * oW, wH * wW * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General, stream);
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
@@ -1076,7 +1076,7 @@ void explicit_gemm_conv_2D_cpu(
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy(wt, gemm_wt, ctype, stream);
copy_cpu(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
@@ -1116,7 +1116,7 @@ void explicit_gemm_conv_2D_cpu(
// Copy results if needed
if (out.dtype() != float32) {
copy_inplace(gemm_out, out, CopyType::Vector, stream);
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}
@@ -1156,7 +1156,7 @@ void explicit_gemm_conv_ND_cpu(
// Fill with zeros
std::vector<array> temps = {array(0, conv_dtype)};
copy(temps.back(), in_padded, CopyType::Scalar, stream);
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = 0;
@@ -1173,7 +1173,7 @@ void explicit_gemm_conv_ND_cpu(
data_offset);
// Copy input values into the slice
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
temps.push_back(in_padded_slice);
// Make strided view
@@ -1212,7 +1212,7 @@ void explicit_gemm_conv_ND_cpu(
}
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General, stream);
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
@@ -1223,13 +1223,13 @@ void explicit_gemm_conv_ND_cpu(
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy(wt, gemm_wt, ctype, stream);
copy_cpu(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
if (flip) {
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
copy(gemm_wt, gemm_wt_, CopyType::Vector, stream);
copy_cpu(gemm_wt, gemm_wt_, CopyType::Vector, stream);
temps.push_back(gemm_wt_);
// Calculate the total size of the spatial dimensions
@@ -1284,7 +1284,7 @@ void explicit_gemm_conv_ND_cpu(
// Copy results if needed
if (out.dtype() != float32) {
copy_inplace(gemm_out, out, CopyType::Vector, stream);
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}

View File

@@ -295,7 +295,11 @@ inline void copy_inplace_dispatch(
} // namespace
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream) {
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(src);
encoder.set_output_array(dst);
@@ -305,7 +309,7 @@ void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); });
}
void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
bool donated = set_copy_output_data(src, dst, ctype);
if (donated && src.dtype() == dst.dtype()) {
// If the output has the same type as the input then there is nothing to
@@ -315,10 +319,10 @@ void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_inplace(src, dst, ctype, stream);
copy_cpu_inplace(src, dst, ctype, stream);
}
void copy_inplace(
void copy_cpu_inplace(
const array& src,
array& dst,
const Shape& data_shape,

View File

@@ -10,10 +10,14 @@
namespace mlx::core {
void copy(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream);
void copy_inplace(
void copy_cpu_inplace(
const array& src,
array& dst,
const Shape& data_shape,

View File

@@ -14,7 +14,7 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
return {arr, false};
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, stream);
copy_cpu(arr, arr_copy, CopyType::General, stream);
return {arr_copy, true};
}
};
@@ -35,7 +35,7 @@ void AllReduce::eval_cpu(
return in;
} else {
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy(in, arr_copy, CopyType::General, s);
copy_cpu(in, arr_copy, CopyType::General, s);
out.copy_shared_buffer(arr_copy);
return arr_copy;
}

View File

@@ -135,7 +135,7 @@ void Eig::eval_cpu(
: array(a.shape(), complex64, nullptr, {});
auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
copy(
copy_cpu(
a,
a_copy,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -196,7 +196,7 @@ void Eigh::eval_cpu(
values.set_data(allocator::malloc(values.nbytes()));
copy(
copy_cpu(
a,
vectors,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -96,7 +96,7 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.flags().row_contiguous && in.is_donatable()) {
out.copy_shared_buffer(in);
} else {
copy(
copy_cpu(
in,
out,
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -517,7 +517,7 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype, stream());
copy_cpu(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
std::vector<array> inds;
@@ -686,7 +686,7 @@ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype, stream());
copy_cpu(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(idx);

View File

@@ -115,7 +115,7 @@ void inverse_impl(
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
// The inverse is computed in place, so just copy the input to the output.
copy(
copy_cpu(
a,
inv,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -88,7 +88,7 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
copy_cpu(x, x_copy, CopyType::General, s);
encoder.add_temporary(x_copy);
return x_copy;
}

View File

@@ -31,7 +31,7 @@ void luf_impl(
strides[ndim - 1] = M;
strides[ndim - 2] = 1;
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
copy_inplace(
copy_cpu_inplace(
a,
lu,
a.shape(),

View File

@@ -124,20 +124,20 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::Vector, s);
copy_cpu(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(false, stx, arr_copy, true);
}
return std::make_tuple(false, stx, arr, false);
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::Vector, s);
copy_cpu(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(true, sty, arr_copy, true);
}
return std::make_tuple(true, sty, arr, false);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, s);
copy_cpu(arr, arr_copy, CopyType::General, s);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy, true);
}
@@ -386,7 +386,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return std::make_tuple(true, sty, arr);
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s);
copy_cpu(arr, temps.back(), CopyType::General, s);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back());
}
@@ -504,7 +504,7 @@ void SegmentedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return std::make_tuple(true, sty, x);
} else {
array xc(x.shape(), x.dtype(), nullptr, {});
copy(x, xc, CopyType::General, s);
copy_cpu(x, xc, CopyType::General, s);
encoder.add_temporary(xc);
int64_t stx = x.shape(-1);
return std::make_tuple(false, stx, xc);

View File

@@ -81,7 +81,7 @@ void matmul_general(
return std::make_tuple(true, sty, arr);
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, stream);
copy_cpu(arr, temps.back(), CopyType::General, stream);
stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back());
}
@@ -142,7 +142,7 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
CopyType ctype = c.data_size() == 1
? CopyType::Scalar
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
copy(c, out, ctype, stream());
copy_cpu(c, out, ctype, stream());
if (inputs[0].shape(-1) == 0) {
return;
}

View File

@@ -22,7 +22,7 @@ void reshape(const array& in, array& out) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc(out.nbytes()));
copy_inplace(in, out, CopyType::General, out.primitive().stream());
copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
} else {
shared_buffer_reshape(in, out_strides, out);
}
@@ -175,7 +175,7 @@ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
copy_cpu(in, out, ctype, stream());
}
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -198,7 +198,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
size_t data_offset = strides[axis_] * sizes[i];
out_slice.copy_shared_buffer(
out, strides, flags, out_slice.size(), data_offset);
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
}
}
@@ -211,7 +211,7 @@ void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
(allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in);
} else {
copy(in, out, CopyType::General, stream());
copy_cpu(in, out, CopyType::General, stream());
}
}
@@ -235,7 +235,7 @@ void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
} else {
ctype = CopyType::General;
}
copy(in, out, ctype, stream());
copy_cpu(in, out, ctype, stream());
}
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -251,7 +251,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
// Fill output with val
copy(val, out, CopyType::Scalar, stream());
copy_cpu(val, out, CopyType::Scalar, stream());
// Find offset for start of input values
size_t data_offset = 0;
@@ -266,7 +266,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice
copy_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
}
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -340,7 +340,7 @@ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
auto [in_offset, donated] =
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
copy_inplace(
copy_cpu_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const Shape& data_shape = */ out.shape(),
@@ -372,11 +372,11 @@ void DynamicSliceUpdate::eval_cpu(
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
auto [out_offset, donated] =
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
copy_inplace(
copy_cpu_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
@@ -412,14 +412,14 @@ void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
// Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, out_strides] =
prepare_slice(out, start_indices_, strides_);
// Do copy
copy_inplace(
copy_cpu_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
@@ -456,9 +456,9 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.dtype() == bool_) {
auto in_tmp = array(in.shape(), uint8, nullptr, {});
in_tmp.copy_shared_buffer(in);
copy_inplace(in_tmp, tmp, CopyType::General, stream());
copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
} else {
copy_inplace(in, tmp, CopyType::General, stream());
copy_cpu_inplace(in, tmp, CopyType::General, stream());
}
auto flags = out.flags();

View File

@@ -26,7 +26,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
strides[in.ndim() - 2] = 1;
strides[in.ndim() - 1] = M;
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
copy_inplace(a, in, CopyType::GeneralGeneral, stream);
copy_cpu_inplace(a, in, CopyType::GeneralGeneral, stream);
auto& encoder = cpu::get_command_encoder(stream);
q.set_data(allocator::malloc(q.nbytes()));
r.set_data(allocator::malloc(r.nbytes()));

View File

@@ -529,7 +529,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr;
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s);
copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
@@ -579,7 +579,7 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr;
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s);
copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
@@ -713,7 +713,7 @@ void fast::AffineQuantize::eval_cpu(
return std::make_pair(arr, false);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, s);
copy_cpu(arr, arr_copy, CopyType::General, s);
return std::make_pair(arr_copy, true);
}
};

View File

@@ -251,7 +251,7 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
auto in = inputs[0];
if (!in.flags().row_contiguous) {
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy(in, arr_copy, CopyType::General, stream());
copy_cpu(in, arr_copy, CopyType::General, stream());
in = arr_copy;
encoder.add_temporary(arr_copy);
}

View File

@@ -132,7 +132,7 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
copy_cpu(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}

View File

@@ -335,7 +335,7 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy input to output
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
copy_cpu(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);
@@ -427,7 +427,7 @@ void Partition::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy input to output
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
copy_cpu(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);

View File

@@ -31,7 +31,7 @@ void svd_impl(
// lapack clobbers the input, so we have to make a copy.
array in(a.shape(), a.dtype(), nullptr, {});
copy(
copy_cpu(
a,
in,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -4,6 +4,7 @@ import unittest
import mlx.core as mx
import mlx_distributed_tests
import mlx_tests
class TestRingDistributed(mlx_distributed_tests.MLXDistributedCommonTestCase):