mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 07:58:14 +08:00 
			
		
		
		
	Doc fix (#1615)
This commit is contained in:
		| @@ -185,16 +185,8 @@ class _Pool3d(_Pool): | ||||
| class MaxPool1d(_Pool1d): | ||||
|     r"""Applies 1-dimensional max pooling. | ||||
|  | ||||
|     Assuming an input of shape :math:`(N, L, C)` and ``kernel_size`` is | ||||
|     :math:`k`, the output is a tensor of shape :math:`(N, L_{out}, C)`, given | ||||
|     by: | ||||
|  | ||||
|         .. math:: | ||||
|             \text{out}(N_i, t, C_j) = \max_{m=0, \ldots, k - 1} | ||||
|                     \text{input}(N_i, \text{stride} \times t + m, C_j), | ||||
|  | ||||
|     where :math:`L_{out} = \left\lfloor \frac{L + 2 \times \text{padding} - | ||||
|     \text{kernel\_size}}{\text{stride}}\right\rfloor + 1`. | ||||
|     Spatially downsamples the input by taking the maximum of a sliding window | ||||
|     of size ``kernel_size`` and sliding stride ``stride``. | ||||
|  | ||||
|     Args: | ||||
|         kernel_size (int or tuple(int)): The size of the pooling window kernel. | ||||
| @@ -224,16 +216,8 @@ class MaxPool1d(_Pool1d): | ||||
| class AvgPool1d(_Pool1d): | ||||
|     r"""Applies 1-dimensional average pooling. | ||||
|  | ||||
|     Assuming an input of shape :math:`(N, L, C)` and ``kernel_size`` is | ||||
|     :math:`k`, the output is a tensor of shape :math:`(N, L_{out}, C)`, given | ||||
|     by: | ||||
|  | ||||
|         .. math:: | ||||
|             \text{out}(N_i, t, C_j) = \frac{1}{k} \sum_{m=0, \ldots, k - 1} | ||||
|                     \text{input}(N_i, \text{stride} \times t + m, C_j), | ||||
|  | ||||
|     where :math:`L_{out} = \left\lfloor \frac{L + 2 \times \text{padding} - | ||||
|     \text{kernel\_size}}{\text{stride}}\right\rfloor + 1`. | ||||
|     Spatially downsamples the input by taking the average of a sliding window | ||||
|     of size ``kernel_size`` and sliding stride ``stride``. | ||||
|  | ||||
|     Args: | ||||
|         kernel_size (int or tuple(int)): The size of the pooling window kernel. | ||||
| @@ -263,26 +247,15 @@ class AvgPool1d(_Pool1d): | ||||
| class MaxPool2d(_Pool2d): | ||||
|     r"""Applies 2-dimensional max pooling. | ||||
|  | ||||
|     Assuming an input of shape :math:`(N, H, W, C)` and ``kernel_size`` is | ||||
|     :math:`(k_H, k_W)`, the output is a tensor of shape :math:`(N, H_{out}, | ||||
|     W_{out}, C)`, given by: | ||||
|     Spatially downsamples the input by taking the maximum of a sliding window | ||||
|     of size ``kernel_size`` and sliding stride ``stride``. | ||||
|  | ||||
|     .. math:: | ||||
|         \begin{aligned} | ||||
|             \text{out}(N_i, h, w, C_j) = & \max_{m=0, \ldots, k_H-1} \max_{n=0, \ldots, k_W-1} \\ | ||||
|                                     & \text{input}(N_i, \text{stride[0]} \times h + m, | ||||
|                                                 \text{stride[1]} \times w + n, C_j), | ||||
|         \end{aligned} | ||||
|     The parameters ``kernel_size``, ``stride``, and ``padding`` can either be: | ||||
|  | ||||
|     where :math:`H_{out} = \left\lfloor\frac{H + 2 * \text{padding[0]} - \text{kernel\_size[0]}}{\text{stride[0]}}\right\rfloor + 1`, | ||||
|     :math:`W_{out} = \left\lfloor\frac{W + 2 * \text{padding[1]} - \text{kernel\_size[1]}}{\text{stride[1]}}\right\rfloor + 1`. | ||||
|  | ||||
|     The parameters ``kernel_size``, ``stride``, ``padding``, can either be: | ||||
|  | ||||
|         - a single ``int`` -- in which case the same value is used for both the | ||||
|           height and width axis; | ||||
|         - a ``tuple`` of two ``int`` s -- in which case, the first ``int`` is | ||||
|           used for the height axis, the second ``int`` for the width axis. | ||||
|     * a single ``int`` -- in which case the same value is used for both the | ||||
|       height and width axis. | ||||
|     * a ``tuple`` of two ``int`` s -- in which case, the first ``int`` is | ||||
|       used for the height axis, the second ``int`` for the width axis. | ||||
|  | ||||
|     Args: | ||||
|         kernel_size (int or tuple(int, int)): The size of the pooling window. | ||||
| @@ -312,26 +285,15 @@ class MaxPool2d(_Pool2d): | ||||
| class AvgPool2d(_Pool2d): | ||||
|     r"""Applies 2-dimensional average pooling. | ||||
|  | ||||
|     Assuming an input of shape :math:`(N, H, W, C)` and ``kernel_size`` is | ||||
|     :math:`(k_H, k_W)`, the output is a tensor of shape :math:`(N, H_{out}, | ||||
|     W_{out}, C)`, given by: | ||||
|     Spatially downsamples the input by taking the average of a sliding window | ||||
|     of size ``kernel_size`` and sliding stride ``stride``. | ||||
|  | ||||
|     .. math:: | ||||
|         \begin{aligned} | ||||
|             \text{out}(N_i, h, w, C_j) = & \frac{1}{k_H k_W} \sum_{m=0, \ldots, k_H-1} \sum_{n=0, \ldots, k_W-1} \\ | ||||
|                                     & \text{input}(N_i, \text{stride[0]} \times h + m, | ||||
|                                                 \text{stride[1]} \times w + n, C_j), | ||||
|         \end{aligned} | ||||
|     The parameters ``kernel_size``, ``stride``, and ``padding`` can either be: | ||||
|  | ||||
|     where :math:`H_{out} = \left\lfloor\frac{H + 2 * \text{padding[0]} - \text{kernel\_size[0]}}{\text{stride[0]}}\right\rfloor + 1`, | ||||
|     :math:`W_{out} = \left\lfloor\frac{W + 2 * \text{padding[1]} - \text{kernel\_size[1]}}{\text{stride[1]}}\right\rfloor + 1`. | ||||
|  | ||||
|     The parameters ``kernel_size``, ``stride``, ``padding``, can either be: | ||||
|  | ||||
|         - a single ``int`` -- in which case the same value is used for both the | ||||
|           height and width axis; | ||||
|         - a ``tuple`` of two ``int`` s -- in which case, the first ``int`` is | ||||
|           used for the height axis, the second ``int`` for the width axis. | ||||
|     * a single ``int`` -- in which case the same value is used for both the | ||||
|       height and width axis. | ||||
|     * a ``tuple`` of two ``int`` s -- in which case, the first ``int`` is | ||||
|       used for the height axis, the second ``int`` for the width axis. | ||||
|  | ||||
|     Args: | ||||
|         kernel_size (int or tuple(int, int)): The size of the pooling window. | ||||
| @@ -359,30 +321,18 @@ class AvgPool2d(_Pool2d): | ||||
|  | ||||
|  | ||||
| class MaxPool3d(_Pool3d): | ||||
|     """ | ||||
|         Assuming an input of shape :math:`(N, D, H, W, C)` and ``kernel_size`` is | ||||
|     :math:`(k_D, k_H, k_W)`, the output is a tensor of shape :math:`(N, D_{out}, | ||||
|     H_{out}, W_{out}, C)`, given by: | ||||
|     r"""Applies 3-dimensional max pooling. | ||||
|  | ||||
|     .. math:: | ||||
|         \begin{aligned} | ||||
|             \text{out}(N_i, d, h, w, C_j) = & \max_{l=0, \ldots, k_D-1} \max_{m=0, \ldots, k_H-1} \max_{n=0, \ldots, k_W-1} \\ | ||||
|                                     & \text{input}(N_i, \text{stride[0]} \times d + l, | ||||
|                                                 \text{stride[1]} \times h + m, | ||||
|                                                 \text{stride[2]} \times w + n, C_j), | ||||
|         \end{aligned} | ||||
|     Spatially downsamples the input by taking the maximum of a sliding window | ||||
|     of size ``kernel_size`` and sliding stride ``stride``. | ||||
|  | ||||
|     where :math:`D_{out} = \left\lfloor\frac{D + 2 * \text{padding[0]} - \text{kernel\_size[0]}}{\text{stride[0]}}\right\rfloor + 1`, | ||||
|     :math:`H_{out} = \left\lfloor\frac{H + 2 * \text{padding[1]} - \text{kernel\_size[1]}}{\text{stride[1]}}\right\rfloor + 1`, | ||||
|     :math:`W_{out} = \left\lfloor\frac{W + 2 * \text{padding[2]} - \text{kernel\_size[2]}}{\text{stride[2]}}\right\rfloor + 1`. | ||||
|     The parameters ``kernel_size``, ``stride``, and ``padding`` can either be: | ||||
|  | ||||
|     The parameters ``kernel_size``, ``stride``, ``padding``, can either be: | ||||
|  | ||||
|         - a single ``int`` -- in which case the same value is used for the depth, | ||||
|         height and width axis; | ||||
|         - a ``tuple`` of three ``int`` s -- in which case, the first ``int`` is used | ||||
|         for the depth axis, the second ``int`` for the height axis, and the third | ||||
|         ``int`` for the width axis. | ||||
|     * a single ``int`` -- in which case the same value is used for the depth, | ||||
|       height, and width axis. | ||||
|     * a ``tuple`` of three ``int`` s -- in which case, the first ``int`` is used | ||||
|       for the depth axis, the second ``int`` for the height axis, and the third | ||||
|       ``int`` for the width axis. | ||||
|  | ||||
|     Args: | ||||
|         kernel_size (int or tuple(int, int, int)): The size of the pooling window. | ||||
| @@ -410,32 +360,20 @@ class MaxPool3d(_Pool3d): | ||||
|  | ||||
|  | ||||
| class AvgPool3d(_Pool3d): | ||||
|     """ | ||||
|         Assuming an input of shape :math:`(N, D, H, W, C)` and ``kernel_size`` is | ||||
|         :math:`(k_D, k_H, k_W)`, the output is a tensor of shape :math:`(N, D_{out}, | ||||
|         H_{out}, W_{out}, C)`, given by: | ||||
|     r"""Applies 3-dimensional average pooling. | ||||
|  | ||||
|         .. math:: | ||||
|         \begin{aligned} | ||||
|             \text{out}(N_i, d, h, w, C_j) = & \frac{1}{k_D k_H k_W} \sum_{l=0, \ldots, k_D-1} \sum_{m=0, \ldots, k_H-1} \sum_{n=0, \ldots, k_W-1} \\ | ||||
|                                     & \text{input}(N_i, \text{stride[0]} \times d + l, | ||||
|                                                 \text{stride[1]} \times h + m, | ||||
|                                                 \text{stride[2]} \times w + n, C_j), | ||||
|         \end{aligned} | ||||
|     Spatially downsamples the input by taking the average of a sliding window | ||||
|     of size ``kernel_size`` and sliding stride ``stride``. | ||||
|  | ||||
|         where :math:`D_{out} = \left\lfloor\frac{D + 2 * \text{padding[0]} - \text{kernel\_size[0]}}{\text{stride[0]}}\right\rfloor + 1`, | ||||
|         :math:`H_{out} = \left\lfloor\frac{H + 2 * \text{padding[1]} - \text{kernel\_size[1]}}{\text{stride[1]}}\right\rfloor + 1`, | ||||
|         :math:`W_{out} = \left\lfloor\frac{W + 2 * \text{padding[2]} - \text{kernel\_size[2]}}{\text{stride[2]}}\right\rfloor + 1`. | ||||
|     The parameters ``kernel_size``, ``stride``, and ``padding`` can either be: | ||||
|  | ||||
|         The parameters ``kernel_size``, ``stride``, ``padding``, can either be: | ||||
|     * a single ``int`` -- in which case the same value is used for the depth, | ||||
|       height, and width axis. | ||||
|     * a ``tuple`` of three ``int`` s -- in which case, the first ``int`` is used | ||||
|       for the depth axis, the second ``int`` for the height axis, and the third | ||||
|       ``int`` for the width axis. | ||||
|  | ||||
|         - a single ``int`` -- in which case the same value is used for the depth, | ||||
|             height and width axis; | ||||
|         - a ``tuple`` of three ``int`` s -- in which case, the first ``int`` is used | ||||
|             for the depth axis, the second ``int`` for the height axis, and the third | ||||
|             ``int`` for the width axis. | ||||
|  | ||||
|         Args: | ||||
|     Args: | ||||
|         kernel_size (int or tuple(int, int, int)): The size of the pooling window. | ||||
|         stride (int or tuple(int, int, int), optional): The stride of the pooling | ||||
|             window. Default: ``kernel_size``. | ||||
| @@ -443,7 +381,7 @@ class AvgPool3d(_Pool3d): | ||||
|             padding to apply to the input. The padding is applied on both sides | ||||
|             of the depth, height and width axis. Default: ``0``. | ||||
|  | ||||
|         Examples: | ||||
|     Examples: | ||||
|         >>> import mlx.core as mx | ||||
|         >>> import mlx.nn.layers as nn | ||||
|         >>> x = mx.random.normal(shape=(8, 16, 32, 32, 4)) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Awni Hannun
					Awni Hannun