precommit

This commit is contained in:
Jyun1998 2024-01-02 02:55:36 +09:00
parent 19bc6a391a
commit 80c4630d26

View File

@ -206,7 +206,9 @@ def kl_div_loss(
return _reduce(loss, reduction)
def hinge_loss(predictions: mx.array, targets: mx.array, reduction: str = "none") -> mx.array:
def hinge_loss(
predictions: mx.array, targets: mx.array, reduction: str = "none"
) -> mx.array:
"""
Computes the hinge loss between predictions and targets for binary classification tasks.
@ -223,7 +225,12 @@ def hinge_loss(predictions: mx.array, targets: mx.array, reduction: str = "none"
return _reduce(loss, reduction)
def huber_loss(predictions: mx.array, targets: mx.array, delta: float = 1.0, reduction: str = "none") -> mx.array:
def huber_loss(
predictions: mx.array,
targets: mx.array,
delta: float = 1.0,
reduction: str = "none",
) -> mx.array:
"""
Computes the Huber loss, a robust loss function for regression tasks.
@ -240,12 +247,14 @@ def huber_loss(predictions: mx.array, targets: mx.array, delta: float = 1.0, red
error = mx.abs(predictions - targets)
is_small_error = error < delta
squared_loss = 0.5 * mx.square(error)
linear_loss = delta * error - 0.5 * (delta ** 2)
linear_loss = delta * error - 0.5 * (delta**2)
loss = mx.where(is_small_error, squared_loss, linear_loss)
return _reduce(loss, reduction)
def dice_loss(inputs: mx.array, targets: mx.array, eps: float = 1e-6, reduction: str = "none") -> mx.array:
def dice_loss(
inputs: mx.array, targets: mx.array, eps: float = 1e-6, reduction: str = "none"
) -> mx.array:
"""
Computes the Dice loss, useful for binary segmentation tasks.
@ -261,17 +270,24 @@ def dice_loss(inputs: mx.array, targets: mx.array, eps: float = 1e-6, reduction:
"""
intersection = mx.sum(inputs * targets, axis=1) # Sum over the feature dimension
union = mx.sum(inputs, axis=1) + mx.sum(targets, axis=1)
dice_score = (2. * intersection + eps) / (union + eps)
dice_score = (2.0 * intersection + eps) / (union + eps)
loss = 1 - dice_score
return _reduce(loss, reduction)
def focal_loss(inputs: mx.array, targets: mx.array, alpha: float = 0.25, gamma: float = 2.0, reduction: str = "none") -> mx.array:
def focal_loss(
inputs: mx.array,
targets: mx.array,
alpha: float = 0.25,
gamma: float = 2.0,
reduction: str = "none",
) -> mx.array:
"""
Computes the Focal loss, useful for handling class imbalance in binary classification tasks.
Args:
inputs (mx.array): Predicted probabilities for the positive class.
targets (mx.array): The target values (binary).
targets (mx.array): The target values (binary).
alpha (float, optional): Weighting factor for positive examples. Default: ``0.25``.
gamma (float, optional): Modulating factor for hard examples. Default: ``2.0``.
reduction (str, optional): Specifies the reduction to apply to the output:
@ -286,7 +302,13 @@ def focal_loss(inputs: mx.array, targets: mx.array, alpha: float = 0.25, gamma:
return _reduce(loss, reduction)
def contrastive_loss(embeddings1: mx.array, embeddings2: mx.array, targets: mx.array, margin: float = 1.0, reduction: str = "none") -> mx.array:
def contrastive_loss(
embeddings1: mx.array,
embeddings2: mx.array,
targets: mx.array,
margin: float = 1.0,
reduction: str = "none",
) -> mx.array:
"""
Computes the Contrastive loss, useful for learning embeddings.
@ -306,7 +328,14 @@ def contrastive_loss(embeddings1: mx.array, embeddings2: mx.array, targets: mx.a
return _reduce(loss, reduction)
def cosine_similarity_loss(embeddings1: mx.array, embeddings2: mx.array, targets: mx.array, eps: float=1e-8, margin: float=0.0, reduction: str = "none") -> mx.array:
def cosine_similarity_loss(
embeddings1: mx.array,
embeddings2: mx.array,
targets: mx.array,
eps: float = 1e-8,
margin: float = 0.0,
reduction: str = "none",
) -> mx.array:
"""
Computes the Cosine Similarity loss, useful for tasks where the angle between embeddings is important.
@ -324,6 +353,10 @@ def cosine_similarity_loss(embeddings1: mx.array, embeddings2: mx.array, targets
embeddings1_norm = mx.sqrt(mx.sum(mx.square(embeddings1), axis=1) + eps)
embeddings2_norm = mx.sqrt(mx.sum(mx.square(embeddings2), axis=1) + eps)
cos_similarity = mx.sum(embeddings1 * embeddings2, axis=1) / (embeddings1_norm * embeddings2_norm)
loss = mx.where(targets == 1, 1 - cos_similarity, mx.maximum(0, cos_similarity - margin))
return _reduce(loss, reduction)
cos_similarity = mx.sum(embeddings1 * embeddings2, axis=1) / (
embeddings1_norm * embeddings2_norm
)
loss = mx.where(
targets == 1, 1 - cos_similarity, mx.maximum(0, cos_similarity - margin)
)
return _reduce(loss, reduction)