Use SmallVector for shapes and strides (#2454)

* Use SmallVector for shapes and strides

* Convert SmallVector to tuple
This commit is contained in:
Cheng
2025-08-05 09:41:03 +09:00
committed by GitHub
parent 7d86a5c108
commit 828c5f1137
30 changed files with 738 additions and 102 deletions

View File

@@ -55,13 +55,13 @@ auto& conv_cache() {
return cache;
}
template <typename T, typename U>
inline std::vector<T> convert_vector(const std::vector<U>& vec) {
return std::vector<T>(vec.begin(), vec.end());
template <typename T, typename Vec>
inline SmallVector<T> convert_vector(const Vec& vec) {
return SmallVector<T>(vec.begin(), vec.end());
}
template <typename T>
inline std::array<T, MAX_NDIM> fixed_vector(const std::vector<T>& vec) {
template <typename T, template <typename U> class Vec>
inline std::array<T, MAX_NDIM> fixed_vector(const Vec<T>& vec) {
if (vec.size() > MAX_NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
@@ -78,7 +78,7 @@ auto nhwc_to_nchw(const array& x) {
auto strides = convert_vector<int64_t>(x.strides());
strides.insert(strides.begin() + 1, strides.back());
strides.erase(strides.end() - 1);
return std::make_tuple(shape, strides);
return std::make_tuple(std::move(shape), std::move(strides));
}
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
@@ -298,10 +298,10 @@ std::optional<cudnn_frontend::OperationGraph> build_op_graph(
array& x,
array& w,
array& y,
const std::vector<int64_t>& stride,
const std::vector<int64_t>& padding_lo,
const std::vector<int64_t>& padding_hi,
const std::vector<int64_t>& dilation) {
const SmallVector<int64_t>& stride,
const SmallVector<int64_t>& padding_lo,
const SmallVector<int64_t>& padding_hi,
const SmallVector<int64_t>& dilation) {
try {
auto compute_dtype = (dtype == float16 || dtype == bfloat16)
? CUDNN_DATA_FLOAT
@@ -468,7 +468,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
// There is no reliable way to deduce the proper cuDNN backend for the
// convolution, so we make a best guess and then try.
std::vector<cudnnBackendDescriptorType_t> try_backends;
SmallVector<cudnnBackendDescriptorType_t, 2> try_backends;
if (flip_) {
// When weight is flipped, we assume it is backward input convolution.
try_backends.push_back(CONV_BACKWARD_INPUT);

View File

@@ -29,12 +29,12 @@ void append_indices_arg(
const std::vector<array>& inputs,
int nidx,
int idx_ndim) {
std::vector<const void*> indices(nidx);
SmallVector<const void*> indices(nidx);
for (int i = 0; i < nidx; ++i) {
indices[i] = inputs[i + 1].data<void>();
}
args.append(std::move(indices));
std::vector<int32_t> indices_shape(nidx * idx_ndim);
SmallVector<int32_t> indices_shape(nidx * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy_n(
inputs[i + 1].shape().begin(),
@@ -42,7 +42,7 @@ void append_indices_arg(
indices_shape.data() + i * idx_ndim);
}
args.append(std::move(indices_shape));
std::vector<int64_t> indices_strides(nidx * idx_ndim);
SmallVector<int64_t> indices_strides(nidx * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy_n(
inputs[i + 1].strides().begin(),
@@ -110,7 +110,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
args.append<int32_t>(src.ndim());
args.append_ndim(slice_sizes_);
args.append(slice_size);
args.append(axes_);
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
append_indices_arg(args, inputs, nidx, idx_ndim);
std::string kernel_name = fmt::format(
@@ -211,7 +211,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
args.append_ndim(out.shape());
args.append_ndim(out.strides());
args.append<int32_t>(out.ndim());
args.append(axes_);
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
append_indices_arg(args, inputs, nidx, idx_ndim);
std::string kernel_name = fmt::format(

View File

@@ -40,19 +40,14 @@ struct KernelArgs {
}
template <typename T>
void append(std::vector<T> vec) {
if (vec.empty()) {
// The nullptr can not be used as arg, pass something not null.
append(std::monostate{});
} else {
append_ptr(vec.data());
storage_.emplace_back(std::move(vec));
}
void append(SmallVector<T> vec) {
storage_.emplace_back(std::move(vec));
append_ptr(std::get<SmallVector<T>>(storage_.back()).data());
}
// Make sure the arg is copied to an array with size of NDIM.
template <size_t NDIM = MAX_NDIM, typename T>
void append_ndim(std::vector<T> vec) {
void append_ndim(SmallVector<T> vec) {
if (vec.size() > NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", NDIM));
@@ -76,9 +71,9 @@ struct KernelArgs {
int32_t,
uint32_t,
int64_t,
std::vector<const void*>,
std::vector<int32_t>,
std::vector<int64_t>>;
SmallVector<const void*>,
SmallVector<int32_t>,
SmallVector<int64_t>>;
std::deque<Arg> storage_;
};

View File

@@ -101,7 +101,7 @@ inline constexpr bool is_inexact_v = is_floating_v<T> || is_complex_v<T>;
// Utility to copy data from vector to array in host.
template <int NDIM = MAX_NDIM, typename T = int32_t>
inline cuda::std::array<T, NDIM> const_param(const std::vector<T>& vec) {
inline cuda::std::array<T, NDIM> const_param(const SmallVector<T>& vec) {
if (vec.size() > NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", NDIM));

View File

@@ -28,15 +28,20 @@ inline array ensure_row_contiguous_matrix(
const array& x,
cu::CommandEncoder& enc,
const Stream& s) {
auto stride_0 = x.strides()[x.ndim() - 2];
auto stride_1 = x.strides()[x.ndim() - 1];
if (stride_0 == x.shape(-1) && stride_1 == 1) {
return x;
if (x.ndim() < 2) {
if (x.strides()[0] == 1) {
return x;
}
} else {
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
auto stride_0 = x.strides()[x.ndim() - 2];
auto stride_1 = x.strides()[x.ndim() - 1];
if (stride_0 == x.shape(-1) && stride_1 == 1) {
return x;
}
}
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
}
} // namespace