Add CosineAnnealingWarmRestarts scheduler

This commit is contained in:
Vincent Amato
2025-08-11 19:17:47 -04:00
parent 7fde1b6a1e
commit 84ef89f548
2 changed files with 107 additions and 0 deletions

View File

@@ -156,3 +156,60 @@ def linear_schedule(init: float, end: float, steps: int) -> Callable:
return step * ((end - init) / steps) + init
return schedule
def cosine_annealing_warm_restarts(
init: float, T_0: int, T_mult: int = 1, eta_min: float = 0.0
) -> Callable:
r"""Make a cosine annealing scheduler with warm restarts.
The learning rate anneals using a cosine schedule and resets periodically.
Args:
init (float): Initial learning rate.
T_0 (int): Number of steps for the first restart.
T_mult (int, optional): Factor to increase the period after each restart. Default: ``1``.
eta_min (float, optional): Minimum learning rate. Default: ``0.0``.
Example:
>>> lr_schedule = optim.cosine_annealing_warm_restarts(1e-1, T_0=10)
>>> optimizer = optim.SGD(learning_rate=lr_schedule)
>>> optimizer.learning_rate
array(0.1, dtype=float32)
>>>
>>> for _ in range(11): optimizer.update({}, {})
...
>>> optimizer.learning_rate
array(0.1, dtype=float32)
"""
if T_0 < 1:
raise ValueError(f"T_0 must be at least 1, got {T_0}")
if T_mult < 1:
raise ValueError(f"T_mult must be at least 1, got {T_mult}")
if eta_min < 0:
raise ValueError(f"eta_min must be non-negative, got {eta_min}")
if init < eta_min:
raise ValueError(f"init must be >= eta_min, got init={init}, eta_min={eta_min}")
def schedule(step):
if isinstance(step, mx.array):
step_val = step.item() if step.size == 1 else step
else:
step_val = step
if T_mult == 1:
T_cur = step_val % T_0
T_i = T_0
else:
if step_val >= T_0:
n = int(math.log((step_val / T_0 * (T_mult - 1) + 1), T_mult))
T_cur = step_val - T_0 * (T_mult**n - 1) / (T_mult - 1)
T_i = T_0 * T_mult**n
else:
T_i = T_0
T_cur = step_val
cos_inner = math.pi * T_cur / T_i
return eta_min + (init - eta_min) * 0.5 * (1.0 + mx.cos(cos_inner))
return schedule

View File

@@ -446,6 +446,56 @@ class TestSchedulers(mlx_tests.MLXTestCase):
lr = lr_schedule(20)
self.assertEqual(lr, expected_end_lr)
def test_cosine_annealing_warm_restarts(self):
# Test with T_mult=1 (equal periods)
lr_schedule = opt.cosine_annealing_warm_restarts(
0.1, T_0=10, T_mult=1, eta_min=0.0
)
# Test initial value
lr = lr_schedule(0)
self.assertAlmostEqual(lr, 0.1, delta=1e-7)
# Test mid-cycle (should be minimum for T_mult=1)
lr = lr_schedule(5)
expected_lr = 0.0 + (0.1 - 0.0) * 0.5 * (1.0 + math.cos(math.pi * 5 / 10))
self.assertAlmostEqual(lr, expected_lr, delta=1e-7)
# Test restart (after T_0 steps)
lr = lr_schedule(10)
self.assertAlmostEqual(lr, 0.1, delta=1e-7)
# Test with T_mult=2 (doubling periods)
lr_schedule = opt.cosine_annealing_warm_restarts(
0.1, T_0=5, T_mult=2, eta_min=0.01
)
# Test first cycle restart
lr = lr_schedule(5)
self.assertAlmostEqual(lr, 0.1, delta=1e-7)
# Test second cycle (should be 10 steps long, restart at step 15)
lr = lr_schedule(15)
self.assertAlmostEqual(lr, 0.1, delta=1e-7)
# Test with eta_min
lr = lr_schedule(10) # Mid of second cycle
expected_lr = 0.01 + (0.1 - 0.01) * 0.5 * (1.0 + math.cos(math.pi * 5 / 10))
self.assertAlmostEqual(lr, expected_lr, delta=1e-7)
# Test error handling
with self.assertRaises(ValueError):
opt.cosine_annealing_warm_restarts(0.1, T_0=0)
with self.assertRaises(ValueError):
opt.cosine_annealing_warm_restarts(0.1, T_0=10, T_mult=0)
with self.assertRaises(ValueError):
opt.cosine_annealing_warm_restarts(0.1, T_0=10, eta_min=-0.1)
with self.assertRaises(ValueError):
opt.cosine_annealing_warm_restarts(0.01, T_0=10, eta_min=0.1)
def test_schedule_joiner(self):
boundaries = [2, 3, 4]
schedules = [lambda _: 3, lambda _: 4, lambda _: 5]