mirror of
https://github.com/ml-explore/mlx.git
synced 2025-11-02 09:18:11 +08:00
clean
This commit is contained in:
@@ -1,18 +1,15 @@
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from mlx.utils import tree_map
|
||||
from time_utils import time_fn
|
||||
|
||||
L = 16
|
||||
L = 65536
|
||||
H = 32
|
||||
H_k = 32 // 4
|
||||
D = 128
|
||||
|
||||
|
||||
def attention(q, k, v):
|
||||
k = mx.quantize(k)
|
||||
v = mx.quantize(v)
|
||||
k = mx.dequantize(*k)
|
||||
v = mx.dequantize(*v)
|
||||
B, Hq, L, D = q.shape
|
||||
_, Hk, S, _ = k.shape
|
||||
q = q.reshape(B, Hk, Hq // Hk, L, D)
|
||||
@@ -25,21 +22,31 @@ def attention(q, k, v):
|
||||
|
||||
|
||||
def sdpa(q, k, v):
|
||||
k = mx.quantize(k, bits=8)
|
||||
v = mx.quantize(v, bits=8)
|
||||
k = mx.dequantize(*k, bits=8)
|
||||
v = mx.dequantize(*v, bits=8)
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0, mask=None)
|
||||
|
||||
|
||||
def quant_sdpa(q, k, v):
|
||||
k = mx.quantize(k, bits=8)
|
||||
v = mx.quantize(v, bits=8)
|
||||
return mx.fast.quantized_scaled_dot_product_attention(
|
||||
q, *k, *v, scale=1.0, mask=None, bits=8
|
||||
)
|
||||
|
||||
|
||||
def quant_attention(q, k, v):
|
||||
B, Hq, L, D = q.shape
|
||||
Hk = k[0].shape[1]
|
||||
|
||||
q = q.reshape((B, Hk, Hq // Hk, L, D))
|
||||
k = tree_map(lambda x: mx.expand_dims(x, axis=2), k)
|
||||
v = tree_map(lambda x: mx.expand_dims(x, axis=2), v)
|
||||
|
||||
scores = mx.quantized_matmul(q, *k, transpose=True)
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
|
||||
out = mx.quantized_matmul(scores, *v, transpose=False)
|
||||
out = out.reshape((B, Hq, L, D))
|
||||
return out
|
||||
|
||||
|
||||
def time_self_attention_primitives(q, k, v):
|
||||
time_fn(attention, q, k, v)
|
||||
|
||||
@@ -52,34 +59,22 @@ def time_self_attention_quant_sdpa(q, k, v):
|
||||
time_fn(quant_sdpa, q, k, v)
|
||||
|
||||
|
||||
def time_self_attention_quant_primitives(q, k, v):
|
||||
time_fn(quant_attention, q, k, v)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mx.random.seed(3)
|
||||
# q = mx.random.uniform(shape=(1, H, 1, D))
|
||||
# k = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
# v = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
q = mx.array(np.load("/Users/alexbarron/mlx-examples/llms/queries.npy"))
|
||||
k = mx.array(np.load("/Users/alexbarron/mlx-examples/llms/keys.npy"))
|
||||
v = mx.array(np.load("/Users/alexbarron/mlx-examples/llms/values.npy"))
|
||||
print(q.dtype)
|
||||
print(q.shape, k.shape, v.shape)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D))
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
mx.eval(q, k, v)
|
||||
|
||||
k_quant = mx.quantize(k)
|
||||
v_quant = mx.quantize(v)
|
||||
mx.eval(k_quant, v_quant)
|
||||
|
||||
# time_self_attention_sdpa(q, k, v)
|
||||
# time_self_attention_quant_sdpa(q, k_quant, v_quant)
|
||||
# time_self_attention_primitives(q, k, v)
|
||||
q_sdpa = quant_sdpa(q, k, v)
|
||||
print(q_sdpa)
|
||||
# o_attention = attention(q, k, v)
|
||||
# print(o_attention)
|
||||
# np.testing.assert_allclose(q_sdpa, o_attention, atol=1e-5)
|
||||
o_sdpa = sdpa(q, k, v)
|
||||
print(o_sdpa)
|
||||
np.testing.assert_allclose(q_sdpa, o_sdpa, atol=1e-5)
|
||||
# print(o_sdpa[..., :64])
|
||||
# print()
|
||||
# print(o_attention[..., :64])
|
||||
# np.testing.assert_allclose(o_sdpa, o_attention)
|
||||
time_self_attention_sdpa(q, k, v)
|
||||
time_self_attention_quant_sdpa(q, k_quant, v_quant)
|
||||
time_self_attention_primitives(q, k, v)
|
||||
time_self_attention_quant_primitives(q, k_quant, v_quant)
|
||||
|
||||
Reference in New Issue
Block a user