Fix mask broadcasting bug and add relevant test (#1003)

This commit is contained in:
Jagrit Digani
2024-04-17 17:33:48 -07:00
committed by GitHub
parent 581b699ac9
commit 85c8a91a27
3 changed files with 67 additions and 35 deletions

View File

@@ -717,7 +717,16 @@ class TestBlas(mlx_tests.MLXTestCase):
out = out * out_mask
return out
def test_shape(M, N, K, block_size, transpose=False, np_dtype=np.float32):
def test_shape(
M,
N,
K,
block_size,
transpose=False,
np_dtype=np.float32,
batch_A=(),
batch_B=(),
):
with self.subTest(
M=M,
N=N,
@@ -725,28 +734,32 @@ class TestBlas(mlx_tests.MLXTestCase):
block_size=block_size,
np_dtype=np_dtype,
transpose=transpose,
batch_A=batch_A,
batch_B=batch_B,
):
tm = (M + block_size - 1) // block_size
tn = (N + block_size - 1) // block_size
tk = (K + block_size - 1) // block_size
a_np = np.random.normal(size=(M, K)).astype(np_dtype)
b_np = np.random.normal(size=(K, N)).astype(np_dtype)
a_np = np.random.normal(size=batch_A + (M, K)).astype(np_dtype)
b_np = np.random.normal(size=batch_B + (K, N)).astype(np_dtype)
a_np_mask = np.random.normal(size=(tm, tk)) < 0.0
b_np_mask = np.random.normal(size=(tk, tn)) < 0.0
out_np_mask = np.random.normal(size=(tm, tn)) < 0.0
batch_out = np.broadcast_shapes(batch_A, batch_B)
a_np_mask = np.random.normal(size=batch_A + (tm, tk)) < 0.0
b_np_mask = np.random.normal(size=batch_B + (tk, tn)) < 0.0
out_np_mask = np.random.normal(size=batch_out + (tm, tn)) < 0.0
a_mx, b_mx, a_mx_mask, b_mx_mask, out_mx_mask = map(
mx.array, (a_np, b_np, a_np_mask, b_np_mask, out_np_mask)
)
if transpose:
b_np = np.random.normal(size=(N, K)).astype(np_dtype)
b_np = np.random.normal(size=batch_B + (N, K)).astype(np_dtype)
b_mx = mx.array(b_np)
b_np = b_np.T
b_mx = b_mx.T
b_np = np.swapaxes(b_np, -2, -1)
b_mx = mx.swapaxes(b_mx, -2, -1)
out_np = np_block_masked_mm(
a_np, b_np, block_size, out_np_mask, a_np_mask, b_np_mask
@@ -779,6 +792,9 @@ class TestBlas(mlx_tests.MLXTestCase):
test_shape(M, N, K, block_size, transpose=False)
test_shape(M, N, K, block_size, transpose=True)
# Test broadcasting
test_shape(64, 64, 64, 32, transpose=False, batch_A=(1, 2), batch_B=(2, 2))
# Test gemv
a_np = np.random.normal(size=(64, 64)).astype(np.float32)
b_np = np.random.normal(size=(64,)).astype(np.float32)