mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-19 07:31:26 +08:00
add test
This commit is contained in:
parent
76def90b73
commit
88cc8e0755
@ -944,8 +944,6 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
wt = arr_copy;
|
||||
}
|
||||
|
||||
auto padding_ = padding_lo_;
|
||||
|
||||
// 3D conv
|
||||
if (out.ndim() == 5) {
|
||||
conv_3D_gpu(
|
||||
@ -954,7 +952,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
padding_,
|
||||
padding_lo_,
|
||||
kernel_strides_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
@ -969,7 +967,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
padding_,
|
||||
padding_lo_,
|
||||
kernel_strides_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
@ -985,7 +983,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
padding_,
|
||||
padding_lo_,
|
||||
kernel_strides_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
|
@ -1088,6 +1088,48 @@ class TestConv(mlx_tests.MLXTestCase):
|
||||
atol=2e-5 if dtype == np.float32 else 5e-4,
|
||||
)
|
||||
|
||||
@unittest.skipIf(not has_torch, "requires Torch")
|
||||
def test_asymmetric_padding(self):
|
||||
inputs = np.random.normal(size=(2, 8, 8, 8, 3)).astype(np.float32)
|
||||
kernel = np.random.normal(size=(2, 3, 3, 3, 3)).astype(np.float32)
|
||||
strides = (2, 2, 2)
|
||||
|
||||
pt_out = torch.conv3d(
|
||||
torch.permute(torch.tensor(inputs), (0, 4, 1, 2, 3)),
|
||||
torch.permute(torch.tensor(kernel), (0, 4, 1, 2, 3)),
|
||||
stride=strides,
|
||||
padding=2,
|
||||
)
|
||||
pt_out = torch.permute(pt_out, (0, 2, 3, 4, 1))[:, 1:, 1:, 1:, :].numpy()
|
||||
|
||||
mx_out = mx.conv_general(
|
||||
mx.array(inputs),
|
||||
mx.array(kernel),
|
||||
stride=strides,
|
||||
padding=([0, 0, 0], [1, 1, 1]),
|
||||
)
|
||||
|
||||
self.assertTrue(mx.allclose(mx_out, mx.array(pt_out), atol=1e-3, rtol=1e-3))
|
||||
|
||||
inputs = np.random.normal(size=(2, 10, 10, 3)).astype(np.float32)
|
||||
kernel = np.random.normal(size=(2, 2, 2, 3)).astype(np.float32)
|
||||
|
||||
pt_out = torch.conv2d(
|
||||
torch.permute(torch.tensor(inputs), (0, 3, 1, 2)),
|
||||
torch.permute(torch.tensor(kernel), (0, 3, 1, 2)),
|
||||
stride=1,
|
||||
padding=(1, 0),
|
||||
)
|
||||
pt_out = torch.permute(pt_out, (0, 2, 3, 1))[:, 1:].numpy()
|
||||
|
||||
mx_out = mx.conv_general(
|
||||
mx.array(inputs),
|
||||
mx.array(kernel),
|
||||
stride=1,
|
||||
padding=([0, 0], [1, 0]),
|
||||
)
|
||||
self.assertTrue(mx.allclose(mx_out, mx.array(pt_out), atol=1e-3, rtol=1e-3))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
Loading…
Reference in New Issue
Block a user