Align mlx::core::max op nan propagation with NumPy (#2339)

* Make max op NaN propagation rules align with numpy

* Adding benchmarks and testing for max op nanpropagation

* Pre-commit formatting

* Fix max complex64 nan propagation and add test

* Improve the cpp unittest

* Only check nans on non-integral types in simd_reduce_impl.

* Cleanup using namespace alias

* Add cpu Max nanpropagation. Fix a small fib in cpu max dispatch data types for int8/int16.

* Make the max nanpropagation test more meaningful for integer types

* Remove tuple unpacking syntax to comply with earlier python versions. Add cuda skip to nanpropagation tests, fix cuda implementation in a separate PR.
This commit is contained in:
jhavukainen
2025-07-09 11:26:27 -07:00
committed by GitHub
parent fb4e8b896b
commit 8b9a3f3cea
7 changed files with 131 additions and 5 deletions

View File

@@ -3,6 +3,8 @@ cuda_skip = {
"TestLayers.test_quantized_embedding",
"TestOps.test_dynamic_slicing",
"TestReduce.test_dtypes",
"TestReduce.test_nanpropagation",
"TestReduce.test_nanpropagation_complex64",
# Block masked matmul NYI
"TestBlas.test_block_masked_matmul",
# Gather matmul NYI