mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
awni's commit files
This commit is contained in:
446
mlx/backend/metal/matmul.cpp
Normal file
446
mlx/backend/metal/matmul.cpp
Normal file
@@ -0,0 +1,446 @@
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
#include <sstream>
|
||||
|
||||
#include "mlx/backend/metal/copy.h"
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
#include "mlx/backend/metal/matmul.h"
|
||||
#include "mlx/backend/metal/mps/gemm.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
bool use_mps() {
|
||||
auto get_val = []() {
|
||||
if (const char* buff_str = std::getenv("MLX_USE_MPS")) {
|
||||
return std::string(buff_str) != "OFF";
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
};
|
||||
static bool use_mps_ = get_val();
|
||||
return use_mps_;
|
||||
}
|
||||
|
||||
#define MAX_OPS_PER_BUFFER max_ops_per_buffer()
|
||||
|
||||
inline void mps_matmul(
|
||||
const Stream& s,
|
||||
metal::Device& d,
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int batch_size_out,
|
||||
int lda,
|
||||
int ldb,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
std::vector<array>& copies) {
|
||||
MPS::DataType mps_dtype = MPS::DataTypeFloat32;
|
||||
|
||||
if (out.dtype() == float16) {
|
||||
mps_dtype = MPS::DataTypeFloat16;
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
mps_dtype = MPS::DataTypeBFloat16;
|
||||
}
|
||||
|
||||
// Used batched MPSMatrixMultiplication if batch_size_out > 1
|
||||
// We only accept the following cases:
|
||||
// 1. Both a, b have batch_size_out matrices worth of data
|
||||
// 2. Only one of a or b has batch_size_out matrices worth of data and
|
||||
// the other has matrix worth of data
|
||||
|
||||
// The matrix dimsenisons of a and b are sure to be regularly strided
|
||||
if (batch_size_out > 1) {
|
||||
// No broadcasting defaults
|
||||
auto batch_size_a = a.data_size() / (M * K);
|
||||
auto batch_size_b = b.data_size() / (K * N);
|
||||
|
||||
auto matrix_stride_a = M * K;
|
||||
auto matrix_stride_b = K * N;
|
||||
auto matrix_stride_out = M * N;
|
||||
|
||||
// At this point, batch_size_a, batch_size_b show the number of matrices
|
||||
// in data, no broadcasted strides considered
|
||||
if (batch_size_out == std::max(batch_size_a, batch_size_b)) {
|
||||
// Handle simple broadcasting
|
||||
if (std::min(batch_size_a, batch_size_b) == 1) {
|
||||
matrix_stride_a = (batch_size_a == 1) ? 0 : matrix_stride_a;
|
||||
matrix_stride_b = (batch_size_b == 1) ? 0 : matrix_stride_b;
|
||||
|
||||
batch_size_a = batch_size_out;
|
||||
batch_size_b = batch_size_out;
|
||||
}
|
||||
|
||||
// Only proceed if broadcasting between a and b is simple
|
||||
// At this point, batch_size_a, batch_size_b show the number of matrices
|
||||
// after broadcasting
|
||||
if (batch_size_a == batch_size_b) {
|
||||
auto a_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
(M * K) / lda,
|
||||
lda,
|
||||
batch_size_a,
|
||||
lda * a.itemsize(),
|
||||
(matrix_stride_a * a.itemsize()),
|
||||
mps_dtype);
|
||||
|
||||
auto b_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
(K * N) / ldb,
|
||||
ldb,
|
||||
batch_size_b,
|
||||
ldb * b.itemsize(),
|
||||
(matrix_stride_b * b.itemsize()),
|
||||
mps_dtype);
|
||||
|
||||
auto out_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
M,
|
||||
N,
|
||||
batch_size_out,
|
||||
N * out.itemsize(),
|
||||
matrix_stride_out * out.itemsize(),
|
||||
mps_dtype);
|
||||
|
||||
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
|
||||
auto a_mat = MPS::Matrix::alloc()->init(a_buf, a_desc);
|
||||
|
||||
auto b_buf = static_cast<const MTL::Buffer*>(b.buffer().ptr());
|
||||
auto b_mat = MPS::Matrix::alloc()->init(b_buf, b_desc);
|
||||
|
||||
auto out_buf = static_cast<MTL::Buffer*>(out.buffer().ptr());
|
||||
auto out_mat = MPS::Matrix::alloc()->init(out_buf, out_desc);
|
||||
|
||||
auto kernel = MPS::MatrixMultiplication::alloc()->init(
|
||||
d.mtl_device(), transpose_a, transpose_b, M, N, K, 1.0, 0.0);
|
||||
|
||||
auto command_buffer = d.get_command_buffer(s.index);
|
||||
kernel->setBatchSize(batch_size_out);
|
||||
kernel->setBatchStart(0);
|
||||
kernel->encodeToCommandBuffer(command_buffer, a_mat, b_mat, out_mat);
|
||||
command_buffer->addCompletedHandler(
|
||||
[a_mat, b_mat, out_mat, kernel, copies](
|
||||
MTL::CommandBuffer*) mutable {
|
||||
a_mat->release();
|
||||
b_mat->release();
|
||||
out_mat->release();
|
||||
kernel->release();
|
||||
copies.clear();
|
||||
});
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Schedule as many calls to MPSMatrixMultiplication as needed otherwise
|
||||
auto a_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
a.data_size() / lda, lda, lda * a.itemsize(), mps_dtype);
|
||||
|
||||
auto b_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
b.data_size() / ldb, ldb, ldb * b.itemsize(), mps_dtype);
|
||||
|
||||
auto out_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
batch_size_out * M, N, N * out.itemsize(), mps_dtype);
|
||||
|
||||
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
|
||||
auto a_mat = MPS::Matrix::alloc()->init(a_buf, a_desc);
|
||||
|
||||
auto b_buf = static_cast<const MTL::Buffer*>(b.buffer().ptr());
|
||||
auto b_mat = MPS::Matrix::alloc()->init(b_buf, b_desc);
|
||||
|
||||
auto out_buf = static_cast<MTL::Buffer*>(out.buffer().ptr());
|
||||
auto out_mat = MPS::Matrix::alloc()->init(out_buf, out_desc);
|
||||
|
||||
auto kernel = MPS::MatrixMultiplication::alloc()->init(
|
||||
d.mtl_device(), transpose_a, transpose_b, M, N, K, 1.0, 0.0);
|
||||
|
||||
auto command_buffer = d.get_command_buffer(s.index);
|
||||
for (int i = 0; i < batch_size_out; ++i) {
|
||||
auto a_row = elem_to_loc(M * K * i, a.shape(), a.strides()) / lda;
|
||||
auto b_row = elem_to_loc(K * N * i, b.shape(), b.strides()) / ldb;
|
||||
kernel->setLeftMatrixOrigin({a_row, 0, 0});
|
||||
kernel->setRightMatrixOrigin({b_row, 0, 0});
|
||||
kernel->setResultMatrixOrigin({i * static_cast<size_t>(M), 0, 0});
|
||||
kernel->encodeToCommandBuffer(command_buffer, a_mat, b_mat, out_mat);
|
||||
}
|
||||
|
||||
command_buffer->addCompletedHandler(
|
||||
[a_mat, b_mat, out_mat, kernel, copies](MTL::CommandBuffer*) mutable {
|
||||
a_mat->release();
|
||||
b_mat->release();
|
||||
out_mat->release();
|
||||
kernel->release();
|
||||
copies.clear();
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void mlx_matmul(
|
||||
const Stream& s,
|
||||
metal::Device& d,
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int batch_size_out,
|
||||
int lda,
|
||||
int ldb,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
std::vector<array>& copies) {
|
||||
// Account for batch sizes and basic broadcasting
|
||||
int batch_size_a = a.data_size() / (M * K);
|
||||
int batch_size_b = b.data_size() / (K * N);
|
||||
|
||||
int matrix_stride_a = (batch_size_a == 1) ? 0 : M * K;
|
||||
int matrix_stride_b = (batch_size_b == 1) ? 0 : K * N;
|
||||
int matrix_stride_out = M * N;
|
||||
|
||||
// Determine dispatch kernel
|
||||
int bm = 32, bn = 32, bk = 16;
|
||||
int wm = 2, wn = 2;
|
||||
|
||||
if ((size_t)batch_size_out * M * N >= 2ul << 20) {
|
||||
if (!transpose_a && transpose_b) {
|
||||
bm = 64;
|
||||
bn = (out.dtype() == float32) ? 64 : 32;
|
||||
bk = (out.dtype() == float32) ? 16 : 32;
|
||||
} else {
|
||||
bm = 64;
|
||||
bn = 64;
|
||||
}
|
||||
}
|
||||
|
||||
std::ostringstream kname;
|
||||
kname << "gemm_" << (transpose_a ? 't' : 'n') << (transpose_b ? 't' : 'n')
|
||||
<< "_" << type_to_name(a) << "_" << type_to_name(out) << "_bm" << bm
|
||||
<< "_bn" << bn << "_bk" << bk << "_wm" << wm << "_wn" << wn << "_MN_"
|
||||
<< ((M % bm == 0 && N % bn == 0) ? "t" : "n") << "aligned"
|
||||
<< "_K_" << ((K % bk == 0) ? "t" : "n") << "aligned";
|
||||
|
||||
// Encode and dispatch kernel
|
||||
auto compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Launch only 1 kernel in the case of simple batching / broadcasting
|
||||
if (batch_size_out == std::max(batch_size_a, batch_size_b) &&
|
||||
(batch_size_a == batch_size_b ||
|
||||
std::min(batch_size_a, batch_size_b) == 1)) {
|
||||
MTL::Size group_dims = MTL::Size(32, wn, wm);
|
||||
MTL::Size grid_dims =
|
||||
MTL::Size((N + bn - 1) / bn, (M + bm - 1) / bm, batch_size_out);
|
||||
|
||||
set_array_buffer(compute_encoder, a, 0);
|
||||
set_array_buffer(compute_encoder, b, 1);
|
||||
set_array_buffer(compute_encoder, out, 2);
|
||||
|
||||
compute_encoder->setBytes(&M, sizeof(int), 3);
|
||||
compute_encoder->setBytes(&N, sizeof(int), 4);
|
||||
compute_encoder->setBytes(&K, sizeof(int), 5);
|
||||
compute_encoder->setBytes(&matrix_stride_a, sizeof(int), 6);
|
||||
compute_encoder->setBytes(&matrix_stride_b, sizeof(int), 7);
|
||||
compute_encoder->setBytes(&matrix_stride_out, sizeof(int), 8);
|
||||
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
|
||||
} else { // Other launch kernels with set offsets
|
||||
|
||||
for (int i = 0; i < batch_size_out; ++i) {
|
||||
auto a_off = elem_to_loc(M * K * i, a.shape(), a.strides());
|
||||
auto b_off = elem_to_loc(K * N * i, b.shape(), b.strides());
|
||||
|
||||
MTL::Size group_dims = MTL::Size(32, wn, wm);
|
||||
MTL::Size grid_dims = MTL::Size((N + bn - 1) / bn, (M + bm - 1) / bm, 1);
|
||||
|
||||
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
|
||||
auto b_buf = static_cast<const MTL::Buffer*>(b.buffer().ptr());
|
||||
auto out_buf = static_cast<const MTL::Buffer*>(out.buffer().ptr());
|
||||
|
||||
compute_encoder->setBuffer(a_buf, a_off * a.itemsize(), 0);
|
||||
compute_encoder->setBuffer(b_buf, b_off * b.itemsize(), 1);
|
||||
compute_encoder->setBuffer(out_buf, i * M * N * out.itemsize(), 2);
|
||||
|
||||
compute_encoder->setBytes(&M, sizeof(int), 3);
|
||||
compute_encoder->setBytes(&N, sizeof(int), 4);
|
||||
compute_encoder->setBytes(&K, sizeof(int), 5);
|
||||
compute_encoder->setBytes(&matrix_stride_a, sizeof(int), 6);
|
||||
compute_encoder->setBytes(&matrix_stride_b, sizeof(int), 7);
|
||||
compute_encoder->setBytes(&matrix_stride_out, sizeof(int), 8);
|
||||
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
d.get_command_buffer(s.index)->addCompletedHandler(
|
||||
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
|
||||
return;
|
||||
}
|
||||
|
||||
void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
if (!is_floating_point(out.dtype())) {
|
||||
throw std::runtime_error(
|
||||
"[matmul] Does not yet support non-floating point types.");
|
||||
}
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
auto& s = stream();
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
auto& a_pre = inputs[0];
|
||||
auto& b_pre = inputs[1];
|
||||
|
||||
// Keep a vector with copies to be cleared in the completed buffer to release
|
||||
// the arrays
|
||||
std::vector<array> copies;
|
||||
auto check_transpose = [&copies, &s](const array& arr) {
|
||||
auto stx = arr.strides()[arr.ndim() - 2];
|
||||
auto sty = arr.strides()[arr.ndim() - 1];
|
||||
if (stx == arr.shape(-1) && sty == 1) {
|
||||
return std::make_tuple(false, stx, arr);
|
||||
} else if (stx == 1 && sty == arr.shape(-2)) {
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_gpu(arr, arr_copy, CopyType::General, s);
|
||||
copies.push_back(arr_copy);
|
||||
size_t stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
};
|
||||
|
||||
auto [a_transposed, a_cols, a] = check_transpose(a_pre);
|
||||
auto [b_transposed, b_cols, b] = check_transpose(b_pre);
|
||||
|
||||
int M = a.shape(-2);
|
||||
int N = b.shape(-1);
|
||||
int K = a.shape(-1);
|
||||
|
||||
auto batch_size_out = out.size() / (M * N);
|
||||
|
||||
// Route to gemv if needed
|
||||
if (std::min(M, N) == 1) {
|
||||
// Collect problem info
|
||||
bool is_b_matrix = N != 1;
|
||||
|
||||
auto& mat = is_b_matrix ? b : a;
|
||||
auto& vec = is_b_matrix ? a : b;
|
||||
bool transpose_mat = is_b_matrix ? !b_transposed : a_transposed;
|
||||
int in_vector_len = K;
|
||||
int out_vector_len = is_b_matrix ? N : M;
|
||||
|
||||
int mat_cols = transpose_mat ? out_vector_len : in_vector_len;
|
||||
int mat_rows = transpose_mat ? in_vector_len : out_vector_len;
|
||||
|
||||
int batch_size_mat = mat.data_size() / (mat_cols * mat_rows);
|
||||
int stride_mat = batch_size_mat == batch_size_out ? mat_cols * mat_rows : 0;
|
||||
|
||||
int batch_size_vec = vec.data_size() / in_vector_len;
|
||||
int stride_vec = batch_size_vec == batch_size_out ? in_vector_len : 0;
|
||||
|
||||
// Determine dispatch kernel
|
||||
int tm = 4, tn = 4;
|
||||
int bm, bn, n_out_per_tgp;
|
||||
std::ostringstream kname;
|
||||
|
||||
if (transpose_mat) {
|
||||
bm = 8;
|
||||
bn = 8;
|
||||
if (out_vector_len >= 24576) {
|
||||
bn = 128;
|
||||
} else if (out_vector_len >= 16384) {
|
||||
bn = 64;
|
||||
} else if (out_vector_len >= 8192) {
|
||||
bn = 16;
|
||||
}
|
||||
|
||||
// Specialized kernel for very small outputs
|
||||
tn = out_vector_len < tn ? 1 : tn;
|
||||
|
||||
n_out_per_tgp = bn * tn;
|
||||
kname << "gemv_t_" << type_to_name(out);
|
||||
|
||||
} else {
|
||||
bm = out_vector_len >= 4096 ? 8 : 4;
|
||||
bn = 32;
|
||||
|
||||
// Specialized kernel for very small outputs
|
||||
tm = out_vector_len < tm ? 1 : tm;
|
||||
|
||||
n_out_per_tgp = bm * tm;
|
||||
kname << "gemv_" << type_to_name(out);
|
||||
}
|
||||
|
||||
kname << "_bm" << bm << "_bn" << bn << "_tm" << tm << "_tn" << tn;
|
||||
|
||||
// Encode and dispatch kernel
|
||||
auto compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
int n_tgp = (out_vector_len + n_out_per_tgp - 1) / n_out_per_tgp;
|
||||
MTL::Size group_dims = MTL::Size(bn, bm, 1);
|
||||
MTL::Size grid_dims = MTL::Size(n_tgp, 1, batch_size_out);
|
||||
|
||||
set_array_buffer(compute_encoder, mat, 0);
|
||||
set_array_buffer(compute_encoder, vec, 1);
|
||||
set_array_buffer(compute_encoder, out, 2);
|
||||
|
||||
compute_encoder->setBytes(&in_vector_len, sizeof(int), 3);
|
||||
compute_encoder->setBytes(&out_vector_len, sizeof(int), 4);
|
||||
compute_encoder->setBytes(&stride_vec, sizeof(int), 5);
|
||||
compute_encoder->setBytes(&stride_mat, sizeof(int), 6);
|
||||
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
|
||||
|
||||
d.get_command_buffer(s.index)->addCompletedHandler(
|
||||
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
|
||||
return;
|
||||
}
|
||||
|
||||
d.end_encoding(s.index);
|
||||
|
||||
if (use_mps()) {
|
||||
mps_matmul(
|
||||
s,
|
||||
d,
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_size_out,
|
||||
a_cols,
|
||||
b_cols,
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
copies);
|
||||
return;
|
||||
}
|
||||
|
||||
mlx_matmul(
|
||||
s,
|
||||
d,
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_size_out,
|
||||
a_cols,
|
||||
b_cols,
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
copies);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
Reference in New Issue
Block a user