mirror of
https://github.com/ml-explore/mlx.git
synced 2025-11-22 23:38:16 +08:00
awni's commit files
This commit is contained in:
635
python/src/indexing.cpp
Normal file
635
python/src/indexing.cpp
Normal file
@@ -0,0 +1,635 @@
|
||||
#include <numeric>
|
||||
#include <sstream>
|
||||
|
||||
#include "python/src/indexing.h"
|
||||
|
||||
#include "mlx/ops.h"
|
||||
|
||||
bool is_none_slice(const py::slice& in_slice) {
|
||||
return (
|
||||
py::getattr(in_slice, "start").is_none() &&
|
||||
py::getattr(in_slice, "stop").is_none() &&
|
||||
py::getattr(in_slice, "step").is_none());
|
||||
}
|
||||
|
||||
int get_slice_int(py::object obj, int default_val) {
|
||||
if (!obj.is_none()) {
|
||||
if (!py::isinstance<py::int_>(obj)) {
|
||||
throw std::invalid_argument("Slice indices must be integers or None.");
|
||||
}
|
||||
return py::cast<int>(py::cast<py::int_>(obj));
|
||||
}
|
||||
return default_val;
|
||||
}
|
||||
|
||||
void get_slice_params(
|
||||
int& starts,
|
||||
int& ends,
|
||||
int& strides,
|
||||
const py::slice& in_slice,
|
||||
int axis_size) {
|
||||
// Following numpy's convention
|
||||
// Assume n is the number of elements in the dimension being sliced.
|
||||
// Then, if i is not given it defaults to 0 for k > 0 and n - 1 for
|
||||
// k < 0 . If j is not given it defaults to n for k > 0 and -n-1 for
|
||||
// k < 0 . If k is not given it defaults to 1
|
||||
|
||||
strides = get_slice_int(py::getattr(in_slice, "step"), 1);
|
||||
starts = get_slice_int(
|
||||
py::getattr(in_slice, "start"), strides < 0 ? axis_size - 1 : 0);
|
||||
ends = get_slice_int(
|
||||
py::getattr(in_slice, "stop"), strides < 0 ? -axis_size - 1 : axis_size);
|
||||
|
||||
// starts = (starts < 0) ? starts + axis_size : starts;
|
||||
// ends = (ends < 0) ? ends + axis_size : ends;
|
||||
}
|
||||
|
||||
array get_int_index(py::object idx, int axis_size) {
|
||||
int idx_ = py::cast<int>(idx);
|
||||
idx_ = (idx_ < 0) ? idx_ + axis_size : idx_;
|
||||
|
||||
return array(idx_, uint32);
|
||||
}
|
||||
|
||||
bool is_valid_index_type(const py::object& obj) {
|
||||
return py::isinstance<py::slice>(obj) || py::isinstance<py::int_>(obj) ||
|
||||
py::isinstance<array>(obj) || obj.is_none() || py::ellipsis().is(obj);
|
||||
}
|
||||
|
||||
array mlx_get_item_slice(const array& src, const py::slice& in_slice) {
|
||||
// Check input and raise error if 0 dim for parity with np
|
||||
if (src.ndim() == 0) {
|
||||
throw std::invalid_argument(
|
||||
"too many indices for array: array is 0-dimensional");
|
||||
}
|
||||
|
||||
// Return a copy of the array if none slice is request
|
||||
if (is_none_slice(in_slice)) {
|
||||
return src;
|
||||
}
|
||||
|
||||
std::vector<int> starts(src.ndim(), 0);
|
||||
std::vector<int> ends = src.shape();
|
||||
std::vector<int> strides(src.ndim(), 1);
|
||||
|
||||
// Check and update slice params
|
||||
get_slice_params(starts[0], ends[0], strides[0], in_slice, ends[0]);
|
||||
return slice(src, starts, ends, strides);
|
||||
}
|
||||
|
||||
array mlx_get_item_array(const array& src, const array& indices) {
|
||||
// Check input and raise error if 0 dim for parity with np
|
||||
if (src.ndim() == 0) {
|
||||
throw std::invalid_argument(
|
||||
"too many indices for array: array is 0-dimensional");
|
||||
}
|
||||
|
||||
if (indices.dtype() == bool_) {
|
||||
throw std::invalid_argument("boolean indices are not yet supported");
|
||||
}
|
||||
|
||||
// If only one input array is mentioned, we set axis=0 in take
|
||||
// for parity with np
|
||||
return take(src, indices, 0);
|
||||
}
|
||||
|
||||
array mlx_get_item_int(const array& src, const py::int_& idx) {
|
||||
// Check input and raise error if 0 dim for parity with np
|
||||
if (src.ndim() == 0) {
|
||||
throw std::invalid_argument(
|
||||
"too many indices for array: array is 0-dimensional");
|
||||
}
|
||||
|
||||
// If only one input idx is mentioned, we set axis=0 in take
|
||||
// for parity with np
|
||||
return take(src, get_int_index(idx, src.shape(0)), 0);
|
||||
}
|
||||
|
||||
array mlx_gather_nd(
|
||||
array src,
|
||||
const std::vector<py::object>& indices,
|
||||
bool gather_first,
|
||||
int& max_dims) {
|
||||
max_dims = 0;
|
||||
std::vector<array> gather_indices;
|
||||
std::vector<bool> is_slice(indices.size(), false);
|
||||
int num_slices = 0;
|
||||
// gather all the arrays
|
||||
for (int i = 0; i < indices.size(); i++) {
|
||||
auto& idx = indices[i];
|
||||
|
||||
if (py::isinstance<py::slice>(idx)) {
|
||||
int start, end, stride;
|
||||
get_slice_params(start, end, stride, idx, src.shape(i));
|
||||
gather_indices.push_back(arange(start, end, stride, uint32));
|
||||
num_slices++;
|
||||
is_slice[i] = true;
|
||||
} else if (py::isinstance<py::int_>(idx)) {
|
||||
gather_indices.push_back(get_int_index(idx, src.shape(i)));
|
||||
} else if (py::isinstance<array>(idx)) {
|
||||
auto arr = py::cast<array>(idx);
|
||||
max_dims = std::max(static_cast<int>(arr.ndim()), max_dims);
|
||||
gather_indices.push_back(arr);
|
||||
}
|
||||
}
|
||||
|
||||
// reshape them so that the int/array indices are first
|
||||
if (gather_first) {
|
||||
int slice_index = 0;
|
||||
for (int i = 0; i < gather_indices.size(); i++) {
|
||||
if (is_slice[i]) {
|
||||
std::vector<int> index_shape(max_dims + num_slices, 1);
|
||||
index_shape[max_dims + slice_index] = gather_indices[i].shape(0);
|
||||
gather_indices[i] = reshape(gather_indices[i], index_shape);
|
||||
slice_index++;
|
||||
} else {
|
||||
std::vector<int> index_shape = gather_indices[i].shape();
|
||||
index_shape.insert(index_shape.end(), num_slices, 1);
|
||||
gather_indices[i] = reshape(gather_indices[i], index_shape);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// reshape them so that the int/array indices are last
|
||||
for (int i = 0; i < gather_indices.size(); i++) {
|
||||
if (i < num_slices) {
|
||||
std::vector<int> index_shape(max_dims + num_slices, 1);
|
||||
index_shape[i] = gather_indices[i].shape(0);
|
||||
gather_indices[i] = reshape(gather_indices[i], index_shape);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Do the gather
|
||||
std::vector<int> axes(indices.size());
|
||||
std::iota(axes.begin(), axes.end(), 0);
|
||||
std::vector<int> slice_sizes = src.shape();
|
||||
std::fill(slice_sizes.begin(), slice_sizes.begin() + indices.size(), 1);
|
||||
src = gather(src, gather_indices, axes, slice_sizes);
|
||||
|
||||
// Squeeze the dims
|
||||
std::vector<int> out_shape;
|
||||
out_shape.insert(
|
||||
out_shape.end(),
|
||||
src.shape().begin(),
|
||||
src.shape().begin() + max_dims + num_slices);
|
||||
out_shape.insert(
|
||||
out_shape.end(),
|
||||
src.shape().begin() + max_dims + num_slices + indices.size(),
|
||||
src.shape().end());
|
||||
src = reshape(src, out_shape);
|
||||
|
||||
return src;
|
||||
}
|
||||
|
||||
array mlx_get_item_nd(array src, const py::tuple& entries) {
|
||||
// No indices make this a noop
|
||||
if (entries.size() == 0) {
|
||||
return src;
|
||||
}
|
||||
|
||||
// The plan is as follows:
|
||||
// 1. Replace the ellipsis with a series of slice(None)
|
||||
// 2. Loop over the indices and calculate the gather indices
|
||||
// 3. Calculate the remaining slices and reshapes
|
||||
|
||||
// Ellipsis handling
|
||||
std::vector<py::object> indices;
|
||||
{
|
||||
int non_none_indices_before = 0;
|
||||
int non_none_indices_after = 0;
|
||||
std::vector<py::object> r_indices;
|
||||
int i = 0;
|
||||
for (; i < entries.size(); i++) {
|
||||
auto idx = entries[i];
|
||||
if (!is_valid_index_type(idx)) {
|
||||
throw std::invalid_argument(
|
||||
"Cannot index mlx array using the given type yet");
|
||||
}
|
||||
if (!py::ellipsis().is(idx)) {
|
||||
indices.push_back(idx);
|
||||
non_none_indices_before += !idx.is_none();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
for (int j = entries.size() - 1; j > i; j--) {
|
||||
auto idx = entries[j];
|
||||
if (!is_valid_index_type(idx)) {
|
||||
throw std::invalid_argument(
|
||||
"Cannot index mlx array using the given type yet");
|
||||
}
|
||||
if (py::ellipsis().is(idx)) {
|
||||
throw std::invalid_argument(
|
||||
"An index can only have a single ellipsis (...)");
|
||||
}
|
||||
r_indices.push_back(idx);
|
||||
non_none_indices_after += !idx.is_none();
|
||||
}
|
||||
for (int axis = non_none_indices_before;
|
||||
axis < src.ndim() - non_none_indices_after;
|
||||
axis++) {
|
||||
indices.push_back(py::slice(0, src.shape(axis), 1));
|
||||
}
|
||||
indices.insert(indices.end(), r_indices.rbegin(), r_indices.rend());
|
||||
}
|
||||
|
||||
// Check for the number of indices passed
|
||||
{
|
||||
int cnt = src.ndim();
|
||||
for (auto& idx : indices) {
|
||||
if (!idx.is_none()) {
|
||||
cnt--;
|
||||
}
|
||||
}
|
||||
if (cnt < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "Too many indices for array with " << src.ndim() << "dimensions.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
}
|
||||
|
||||
// Gather handling
|
||||
//
|
||||
// Check whether we have arrays or integer indices and delegate to gather_nd
|
||||
// after removing the slices at the end and all Nones.
|
||||
std::vector<py::object> remaining_indices;
|
||||
bool have_array = false;
|
||||
{
|
||||
// First check whether the results of gather are going to be 1st or
|
||||
// normally in between.
|
||||
bool have_non_array = false;
|
||||
bool gather_first = false;
|
||||
for (auto& idx : indices) {
|
||||
if (py::isinstance<array>(idx) || py::isinstance<py::int_>(idx)) {
|
||||
if (have_array && have_non_array) {
|
||||
gather_first = true;
|
||||
break;
|
||||
}
|
||||
have_array = true;
|
||||
} else {
|
||||
have_non_array |= have_array;
|
||||
}
|
||||
}
|
||||
|
||||
if (have_array) {
|
||||
int last_array;
|
||||
// Then find the last array
|
||||
for (last_array = indices.size() - 1; last_array >= 0; last_array--) {
|
||||
auto& idx = indices[last_array];
|
||||
if (py::isinstance<array>(idx) || py::isinstance<py::int_>(idx)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<py::object> gather_indices;
|
||||
for (int i = 0; i <= last_array; i++) {
|
||||
auto& idx = indices[i];
|
||||
if (!idx.is_none()) {
|
||||
gather_indices.push_back(idx);
|
||||
}
|
||||
}
|
||||
int max_dims;
|
||||
src = mlx_gather_nd(src, gather_indices, gather_first, max_dims);
|
||||
|
||||
// Reassemble the indices for the slicing or reshaping if there are any
|
||||
if (gather_first) {
|
||||
for (int i = 0; i < max_dims; i++) {
|
||||
remaining_indices.push_back(
|
||||
py::slice(py::none(), py::none(), py::none()));
|
||||
}
|
||||
for (int i = 0; i < last_array; i++) {
|
||||
auto& idx = indices[i];
|
||||
if (idx.is_none()) {
|
||||
remaining_indices.push_back(indices[i]);
|
||||
} else if (py::isinstance<py::slice>(idx)) {
|
||||
remaining_indices.push_back(
|
||||
py::slice(py::none(), py::none(), py::none()));
|
||||
}
|
||||
}
|
||||
for (int i = last_array + 1; i < indices.size(); i++) {
|
||||
remaining_indices.push_back(indices[i]);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < indices.size(); i++) {
|
||||
auto& idx = indices[i];
|
||||
if (py::isinstance<array>(idx) || py::isinstance<py::int_>(idx)) {
|
||||
break;
|
||||
} else if (idx.is_none()) {
|
||||
remaining_indices.push_back(idx);
|
||||
} else {
|
||||
remaining_indices.push_back(
|
||||
py::slice(py::none(), py::none(), py::none()));
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < max_dims; i++) {
|
||||
remaining_indices.push_back(
|
||||
py::slice(py::none(), py::none(), py::none()));
|
||||
}
|
||||
for (int i = last_array + 1; i < indices.size(); i++) {
|
||||
remaining_indices.push_back(indices[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (have_array && remaining_indices.empty()) {
|
||||
return src;
|
||||
}
|
||||
if (remaining_indices.empty()) {
|
||||
remaining_indices = indices;
|
||||
}
|
||||
|
||||
// Slice handling
|
||||
{
|
||||
std::vector<int> starts(src.ndim(), 0);
|
||||
std::vector<int> ends = src.shape();
|
||||
std::vector<int> strides(src.ndim(), 1);
|
||||
int axis = 0;
|
||||
for (auto& idx : remaining_indices) {
|
||||
if (!idx.is_none()) {
|
||||
get_slice_params(
|
||||
starts[axis], ends[axis], strides[axis], idx, ends[axis]);
|
||||
axis++;
|
||||
}
|
||||
}
|
||||
src = slice(src, starts, ends, strides);
|
||||
}
|
||||
|
||||
// Unsqueeze handling
|
||||
if (remaining_indices.size() > src.ndim()) {
|
||||
std::vector<int> out_shape;
|
||||
int axis = 0;
|
||||
for (auto& idx : remaining_indices) {
|
||||
if (idx.is_none()) {
|
||||
out_shape.push_back(1);
|
||||
} else {
|
||||
out_shape.push_back(src.shape(axis++));
|
||||
}
|
||||
}
|
||||
src = reshape(src, out_shape);
|
||||
}
|
||||
|
||||
return src;
|
||||
}
|
||||
|
||||
array mlx_get_item(const array& src, const py::object& obj) {
|
||||
if (py::isinstance<py::slice>(obj)) {
|
||||
return mlx_get_item_slice(src, obj);
|
||||
} else if (py::isinstance<array>(obj)) {
|
||||
return mlx_get_item_array(src, py::cast<array>(obj));
|
||||
} else if (py::isinstance<py::int_>(obj)) {
|
||||
return mlx_get_item_int(src, obj);
|
||||
} else if (py::isinstance<py::tuple>(obj)) {
|
||||
return mlx_get_item_nd(src, obj);
|
||||
} else if (obj.is_none()) {
|
||||
std::vector<int> s(1, 1);
|
||||
s.insert(s.end(), src.shape().begin(), src.shape().end());
|
||||
return reshape(src, s);
|
||||
}
|
||||
throw std::invalid_argument("Cannot index mlx array using the given type.");
|
||||
}
|
||||
|
||||
array mlx_set_item_int(
|
||||
const array& src,
|
||||
const py::int_& idx,
|
||||
const array& update) {
|
||||
if (src.ndim() == 0) {
|
||||
throw std::invalid_argument(
|
||||
"too many indices for array: array is 0-dimensional");
|
||||
}
|
||||
|
||||
// Remove any leading singleton dimensions from the update
|
||||
// and then broadcast update to shape of src[0, ...]
|
||||
int s = 0;
|
||||
for (; s < update.ndim() && update.shape(s) == 1; s++)
|
||||
;
|
||||
auto up_shape =
|
||||
std::vector<int>(update.shape().begin() + s, update.shape().end());
|
||||
auto shape = src.shape();
|
||||
shape[0] = 1;
|
||||
return scatter(
|
||||
src,
|
||||
get_int_index(idx, src.shape(0)),
|
||||
broadcast_to(reshape(update, up_shape), shape),
|
||||
0);
|
||||
}
|
||||
|
||||
array mlx_set_item_array(
|
||||
const array& src,
|
||||
const array& indices,
|
||||
const array& update) {
|
||||
if (src.ndim() == 0) {
|
||||
throw std::invalid_argument(
|
||||
"too many indices for array: array is 0-dimensional");
|
||||
}
|
||||
|
||||
// Remove any leading singleton dimensions from the update
|
||||
int s = 0;
|
||||
for (; s < update.ndim() && update.shape(s) == 1; s++)
|
||||
;
|
||||
auto up_shape =
|
||||
std::vector<int>(update.shape().begin() + s, update.shape().end());
|
||||
auto up = reshape(update, up_shape);
|
||||
|
||||
// The update shape must broadcast with indices.shape + [1] + src.shape[1:]
|
||||
up_shape = indices.shape();
|
||||
up_shape.insert(up_shape.end(), src.shape().begin() + 1, src.shape().end());
|
||||
up = broadcast_to(up, up_shape);
|
||||
up_shape.insert(up_shape.begin() + indices.ndim(), 1);
|
||||
up = reshape(up, up_shape);
|
||||
|
||||
return scatter(src, indices, up, 0);
|
||||
}
|
||||
|
||||
array mlx_set_item_slice(
|
||||
const array& src,
|
||||
const py::slice& in_slice,
|
||||
const array& update) {
|
||||
// Check input and raise error if 0 dim for parity with np
|
||||
if (src.ndim() == 0) {
|
||||
throw std::invalid_argument(
|
||||
"too many indices for array: array is 0-dimensional");
|
||||
}
|
||||
|
||||
// If none slice is requested broadcast the update
|
||||
// to the src size and return it.
|
||||
if (is_none_slice(in_slice)) {
|
||||
int s = 0;
|
||||
for (; s < update.ndim() && update.shape(s) == 1; s++)
|
||||
;
|
||||
auto up_shape =
|
||||
std::vector<int>(update.shape().begin() + s, update.shape().end());
|
||||
return broadcast_to(reshape(update, up_shape), src.shape());
|
||||
}
|
||||
|
||||
int start = 0;
|
||||
int end = src.shape(0);
|
||||
int stride = 1;
|
||||
|
||||
// Check and update slice params
|
||||
get_slice_params(start, end, stride, in_slice, end);
|
||||
|
||||
return mlx_set_item_array(src, arange(start, end, stride, uint32), update);
|
||||
}
|
||||
|
||||
array mlx_set_item_nd(
|
||||
const array& src,
|
||||
const py::tuple& entries,
|
||||
const array& update) {
|
||||
std::vector<py::object> indices;
|
||||
int non_none_indices = 0;
|
||||
|
||||
// Expand ellipses into a series of ':' slices
|
||||
{
|
||||
int non_none_indices_before = 0;
|
||||
int non_none_indices_after = 0;
|
||||
bool has_ellipsis = false;
|
||||
int indices_before = 0;
|
||||
for (int i = 0; i < entries.size(); ++i) {
|
||||
auto idx = entries[i];
|
||||
if (!is_valid_index_type(idx)) {
|
||||
throw std::invalid_argument(
|
||||
"Cannot index mlx array using the given type yet");
|
||||
} else if (!py::ellipsis().is(idx)) {
|
||||
if (!has_ellipsis) {
|
||||
indices_before++;
|
||||
non_none_indices_before += !idx.is_none();
|
||||
} else {
|
||||
non_none_indices_after += !idx.is_none();
|
||||
}
|
||||
indices.push_back(idx);
|
||||
} else if (has_ellipsis) {
|
||||
throw std::invalid_argument(
|
||||
"An index can only have a single ellipsis (...)");
|
||||
} else {
|
||||
has_ellipsis = true;
|
||||
}
|
||||
}
|
||||
if (has_ellipsis) {
|
||||
for (int axis = non_none_indices_before;
|
||||
axis < src.ndim() - non_none_indices_after;
|
||||
axis++) {
|
||||
indices.insert(
|
||||
indices.begin() + indices_before, py::slice(0, src.shape(axis), 1));
|
||||
}
|
||||
non_none_indices = src.ndim();
|
||||
} else {
|
||||
non_none_indices = non_none_indices_before + non_none_indices_after;
|
||||
}
|
||||
}
|
||||
|
||||
if (non_none_indices > src.ndim()) {
|
||||
std::ostringstream msg;
|
||||
msg << "Too many indices for array with " << src.ndim() << "dimensions.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
// Remove leading singletons dimensions from the update
|
||||
int s = 0;
|
||||
for (; s < update.ndim() && update.shape(s) == 1; s++) {
|
||||
};
|
||||
auto up_shape =
|
||||
std::vector<int>(update.shape().begin() + s, update.shape().end());
|
||||
auto up = reshape(update, up_shape);
|
||||
|
||||
// If no non-None indices return the broadcasted update
|
||||
if (non_none_indices == 0) {
|
||||
return broadcast_to(up, src.shape());
|
||||
}
|
||||
|
||||
unsigned long max_dim = 0;
|
||||
bool arrays_first = false;
|
||||
int num_slices = 0;
|
||||
int num_arrays = 0;
|
||||
{
|
||||
bool have_array = false;
|
||||
bool have_non_array = false;
|
||||
for (auto& idx : indices) {
|
||||
if (py::isinstance<py::slice>(idx) || idx.is_none()) {
|
||||
have_non_array = have_array;
|
||||
num_slices++;
|
||||
} else if (py::isinstance<array>(idx)) {
|
||||
have_array = true;
|
||||
if (have_array && have_non_array) {
|
||||
arrays_first = true;
|
||||
}
|
||||
max_dim = std::max(py::cast<array>(idx).ndim(), max_dim);
|
||||
num_arrays++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<array> arr_indices;
|
||||
int slice_num = 0;
|
||||
int array_num = 0;
|
||||
int ax = 0;
|
||||
for (int i = 0; i < indices.size(); ++i) {
|
||||
auto& pyidx = indices[i];
|
||||
if (py::isinstance<py::slice>(pyidx)) {
|
||||
int start, end, stride;
|
||||
get_slice_params(start, end, stride, pyidx, src.shape(ax++));
|
||||
auto idx = arange(start, end, stride, uint32);
|
||||
std::vector<int> idx_shape(max_dim + num_slices, 1);
|
||||
auto loc = slice_num + (arrays_first ? max_dim : 0);
|
||||
slice_num++;
|
||||
idx_shape[loc] = idx.size();
|
||||
arr_indices.push_back(reshape(idx, idx_shape));
|
||||
} else if (py::isinstance<py::int_>(pyidx)) {
|
||||
arr_indices.push_back(get_int_index(pyidx, src.shape(ax++)));
|
||||
} else if (pyidx.is_none()) {
|
||||
slice_num++;
|
||||
} else if (py::isinstance<array>(pyidx)) {
|
||||
ax++;
|
||||
auto idx = py::cast<array>(pyidx);
|
||||
std::vector<int> idx_shape;
|
||||
if (!arrays_first) {
|
||||
idx_shape.insert(idx_shape.end(), slice_num, 1);
|
||||
}
|
||||
idx_shape.insert(idx_shape.end(), max_dim - idx.ndim(), 1);
|
||||
idx_shape.insert(idx_shape.end(), idx.shape().begin(), idx.shape().end());
|
||||
idx_shape.insert(
|
||||
idx_shape.end(), num_slices - (arrays_first ? 0 : slice_num), 1);
|
||||
arr_indices.push_back(reshape(idx, idx_shape));
|
||||
if (!arrays_first && ++array_num == num_arrays) {
|
||||
slice_num += max_dim;
|
||||
}
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"Cannot index mlx array using the given type yet");
|
||||
}
|
||||
}
|
||||
|
||||
arr_indices = broadcast_arrays(arr_indices);
|
||||
up_shape = arr_indices[0].shape();
|
||||
up_shape.insert(
|
||||
up_shape.end(),
|
||||
src.shape().begin() + non_none_indices,
|
||||
src.shape().end());
|
||||
up = broadcast_to(up, up_shape);
|
||||
up_shape.insert(
|
||||
up_shape.begin() + arr_indices[0].ndim(), non_none_indices, 1);
|
||||
up = reshape(up, up_shape);
|
||||
|
||||
std::vector<int> axes(arr_indices.size(), 0);
|
||||
std::iota(axes.begin(), axes.end(), 0);
|
||||
return scatter(src, arr_indices, up, axes);
|
||||
}
|
||||
|
||||
void mlx_set_item(array& src, const py::object& obj, const ScalarOrArray& v) {
|
||||
auto vals = to_array(v, src.dtype());
|
||||
auto impl = [&src, &obj, &vals]() {
|
||||
if (py::isinstance<py::slice>(obj)) {
|
||||
return mlx_set_item_slice(src, obj, vals);
|
||||
} else if (py::isinstance<array>(obj)) {
|
||||
return mlx_set_item_array(src, py::cast<array>(obj), vals);
|
||||
} else if (py::isinstance<py::int_>(obj)) {
|
||||
return mlx_set_item_int(src, obj, vals);
|
||||
} else if (py::isinstance<py::tuple>(obj)) {
|
||||
return mlx_set_item_nd(src, obj, vals);
|
||||
} else if (obj.is_none()) {
|
||||
return broadcast_to(vals, src.shape());
|
||||
}
|
||||
throw std::invalid_argument("Cannot index mlx array using the given type.");
|
||||
};
|
||||
auto out = impl();
|
||||
src.overwrite_descriptor(out);
|
||||
}
|
||||
Reference in New Issue
Block a user