awni's commit files

This commit is contained in:
Awni Hannun
2023-11-29 10:30:41 -08:00
parent e411fcae68
commit 8ca7f9e8e9
130 changed files with 30159 additions and 0 deletions

1041
python/tests/test_array.py Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,263 @@
import unittest
import mlx.core as mx
import mlx_tests
class TestAutograd(mlx_tests.MLXTestCase):
def test_jvp(self):
fun = lambda x: 2 * x
out, dout = mx.jvp(fun, [mx.array(1.0)], [mx.array(2.0)])
self.assertEqual(out[0].item(), 2.0)
self.assertEqual(dout[0].item(), 4.0)
fun = lambda x, y: x * y
_, out = mx.jvp(
fun, [mx.array(4.0), mx.array(2.0)], [mx.array(3.0), mx.array(2.0)]
)
self.assertEqual(out[0].item(), 4.0 * 2.0 + 2.0 * 3.0)
fun = lambda x, y, z: (x * y, y * z)
_, out = mx.jvp(
fun,
[mx.array(2.0), mx.array(4.0), mx.array(6.0)],
[mx.array(1.0), mx.array(3.0), mx.array(1.0)],
)
self.assertEqual(len(out), 2)
self.assertEqual(out[0].item(), 4.0 * 1.0 + 2.0 * 3.0)
self.assertEqual(out[1].item(), 4.0 * 1.0 + 6.0 * 3.0)
def test_vjp(self):
fun = lambda x: 2 * x
out, dout = mx.vjp(fun, [mx.array(1.0)], [mx.array(2.0)])
self.assertEqual(out[0].item(), 2.0)
self.assertEqual(dout[0].item(), 4.0)
fun = lambda x, y: x * y
_, dout = mx.vjp(fun, [mx.array(4.0), mx.array(2.0)], [mx.array(3.0)])
self.assertEqual(dout[0].item(), 6.0)
self.assertEqual(dout[1].item(), 12.0)
fun = lambda x, y, z: (x * y, y * z)
_, out = mx.vjp(
fun,
[mx.array(2.0), mx.array(4.0), mx.array(6.0)],
[mx.array(1.0), mx.array(3.0)],
)
self.assertEqual(len(out), 3)
self.assertEqual(out[0].item(), 4.0 * 1.0)
self.assertEqual(out[1].item(), 2.0 * 1.0 + 6.0 * 3.0)
self.assertEqual(out[2].item(), 4.0 * 3.0)
def test_grad(self):
fun = lambda x: x * x
value, dfdx = mx.value_and_grad(fun)(mx.array(0.5))
self.assertEqual(value.item(), 0.25)
self.assertEqual(dfdx.item(), 1.0)
dfdx = mx.grad(fun)(mx.array(0.5))
self.assertEqual(dfdx.item(), 1.0)
df2dx2 = mx.grad(mx.grad(fun))(mx.array(0.5))
self.assertEqual(df2dx2.item(), 2.0)
df3dx3 = mx.grad(mx.grad(mx.grad(fun)))(mx.array(0.5))
self.assertEqual(df3dx3.item(), 0.0)
fun = lambda x, y: x * y
x = mx.array(2.0)
y = mx.array(3.0)
dfdx = mx.grad(fun, argnums=0)(x, y)
self.assertEqual(dfdx.item(), 3.0)
dfdx = mx.grad(fun, argnums=1)(x, y)
self.assertEqual(dfdx.item(), 2.0)
# Pass non array args to functions works
fun = lambda x, y: x
value, dfdx = mx.value_and_grad(fun)(mx.array(2.0), "hello")
self.assertEqual(value.item(), 2.0)
self.assertEqual(dfdx.item(), 1.0)
dfdx = mx.grad(fun)(mx.array(2.0), "hello")
self.assertEqual(dfdx.item(), 1.0)
# Raises when function does not return array
fun = lambda x: "hello"
with self.assertRaises(ValueError):
mx.grad(fun)(mx.array(2.0))
# Raises for invalid argument number or argument type
fun = lambda x: x
with self.assertRaises(ValueError):
mx.grad(fun, argnums=2)(mx.array(2.0))
with self.assertRaises(ValueError):
mx.grad(fun, argnums=-2)(mx.array(2.0))
with self.assertRaises(ValueError):
mx.grad(fun)("hello")
# Raises when output is not a scalar array
fun = lambda x: mx.sum(x, keepdims=True)
with self.assertRaises(ValueError):
mx.grad(fun)(mx.ones((2, 2)))
def test_grad_trees(self):
fun = lambda x, y: x * y
value, dfdx = mx.value_and_grad(fun, (0, 1))(mx.array(0.5), mx.array(2.0))
self.assertEqual(value.item(), 1.0)
self.assertTrue(isinstance(dfdx, tuple))
self.assertEqual(dfdx[0].item(), 2.0)
self.assertEqual(dfdx[1].item(), 0.5)
fun = lambda x, y: x * y
value, dfdx = mx.value_and_grad(fun, 1)(mx.array(0.5), mx.array(2.0))
self.assertEqual(value.item(), 1.0)
self.assertEqual(dfdx.item(), 0.5)
fun = lambda p: p["x"] * p["y"]
value, dfdx = mx.value_and_grad(fun)({"x": mx.array(0.5), "y": mx.array(2.0)})
self.assertEqual(value.item(), 1.0)
self.assertEqual(dfdx["x"].item(), 2.0)
self.assertEqual(dfdx["y"].item(), 0.5)
fun = lambda p: p["x"] * p["y"]
with self.assertRaises(ValueError):
mx.value_and_grad(fun)({"x": 0.5, "y": mx.array(2.0)})
with self.assertRaises(ValueError):
mx.value_and_grad(fun, (0, 1))({"x": mx.array(0.5), "y": mx.array(2.0)})
fun = lambda p, b: mx.square(p[0]["foo"][2]) * b
value, dfdx = mx.value_and_grad(fun)(
[{"foo": [[], [], mx.array(2.0)]}], mx.array(0.5)
)
self.assertEqual(value.item(), 2.0)
self.assertEqual(dfdx[0]["foo"][2].item(), 2.0)
fun = lambda x: x
with self.assertRaises(TypeError):
mx.value_and_grad(fun, (None, None))
with self.assertRaises(ValueError):
mx.value_and_grad(fun, tuple())
def test_auxiliary_values(self):
def fun(x, y):
l = (x * y).sum()
extra = {"loss": l, "foo": y.square() + x.square(), "bar": [1, 2, 3, y, x]}
return l, extra
fun_value_grad = mx.value_and_grad(fun)
fun_grad = mx.grad(fun)
(loss, a), b = fun_value_grad(mx.ones((2, 2)), mx.ones((2, 2)))
self.assertEqual(a["loss"].item(), 4)
self.assertTrue(mx.array_equal(b, mx.ones((2, 2))))
self.assertTrue(mx.array_equal(a["foo"], 2 * mx.ones((2, 2))))
self.assertEqual(a["bar"][:3], [1, 2, 3])
self.assertTrue(mx.array_equal(a["bar"][3], mx.ones((2, 2))))
self.assertTrue(mx.array_equal(a["bar"][4], mx.ones((2, 2))))
with self.assertRaises(ValueError):
_ = fun_grad(mx.ones((2, 2)), mx.ones((2, 2)))
def test_grad_kwargs(self):
fun = lambda x, y: x * y
a, b = mx.array(0.5), mx.array(2.0)
dfdx = mx.grad(fun)
self.assertEqual(dfdx(a, b).item(), 2.0)
self.assertEqual(dfdx(a, y=b).item(), 2.0)
with self.assertRaises(ValueError):
dfdx(x=a, y=b).item()
dfdy = mx.grad(fun, argnums=[], argnames=["y"])
with self.assertRaises(ValueError):
dfdy(a, b)
grads = dfdy(a, y=b)
self.assertTrue(isinstance(grads, tuple))
self.assertTrue(grads[0] is None)
self.assertTrue(isinstance(grads[1], dict))
self.assertEqual(grads[1]["y"].item(), 0.5)
grads = dfdy(x=a, y=b)
self.assertEqual(grads[1]["y"].item(), 0.5)
self.assertEqual(len(grads[1]), 1)
dfdxy = mx.grad(fun, argnums=[0], argnames=["y"])
with self.assertRaises(ValueError):
dfdxy(a, b)
with self.assertRaises(ValueError):
dfdxy(x=a, y=b)
grads = dfdxy(a, y=b)
self.assertTrue(isinstance(grads, tuple))
self.assertEqual(grads[0].item(), 2.0)
self.assertTrue(isinstance(grads[1], dict))
self.assertEqual(grads[1]["y"].item(), 0.5)
fun = lambda x, y, z: x * y * z
dfdxyz = mx.grad(fun, argnums=[0, 1], argnames=["z"])
c = mx.array(4.0)
grads = dfdxyz(a, b, z=c)
self.assertTrue(isinstance(grads, tuple))
self.assertTrue(isinstance(grads[0], tuple))
self.assertEqual(grads[0][0].item(), 8.0)
self.assertEqual(grads[0][1].item(), 2.0)
self.assertTrue(isinstance(grads[1], dict))
self.assertEqual(grads[1]["z"].item(), 1.0)
fun = lambda x, y: x * y
dfdy = mx.grad(fun, argnames=["y"])
grads = dfdy(a, y=b)
self.assertTrue(isinstance(grads, tuple))
self.assertTrue(grads[0] is None)
self.assertTrue(isinstance(grads[1], dict))
self.assertEqual(grads[1]["y"].item(), 0.5)
def test_captured(self):
a = mx.array(5.0)
f = lambda x: a + x
g = lambda x: a + a
h = lambda x: x + x
dfdx = mx.grad(f)
self.assertEqual(dfdx(a).item(), 1.0)
dgdx = mx.grad(g)
self.assertEqual(dgdx(a).item(), 0.0)
dhdx = mx.grad(h)
self.assertEqual(dhdx(a).item(), 2.0)
d2fdx2 = mx.grad(dfdx)
self.assertEqual(d2fdx2(a).item(), 0.0)
d2gdx2 = mx.grad(dgdx)
self.assertEqual(d2gdx2(a).item(), 0.0)
d2hdx2 = mx.grad(dhdx)
self.assertEqual(d2hdx2(a).item(), 0.0)
def test_stop_gradient(self):
shape_in = (4, 4)
w_in = mx.ones(shape_in)
x_in = mx.ones(shape_in)
cotan = mx.ones(shape_in)
def h(w, x):
x1 = 2 * x
y = mx.stop_gradient(x1)
y1 = 3 * y
return w @ y1
vals, vjps = mx.vjp(h, [w_in, x_in], [cotan])
mx.eval(vjps)
self.assertTrue(mx.allclose(vjps[0], 24.0 * mx.ones(shape_in)))
self.assertTrue(mx.allclose(vjps[1], mx.zeros(shape_in)))
g = lambda x: h(w_in, x)
vals, vjps = mx.vjp(g, [x_in], [cotan])
mx.eval(vjps)
self.assertTrue(mx.allclose(vjps[0], mx.zeros(shape_in)))
if __name__ == "__main__":
unittest.main()

105
python/tests/test_device.py Normal file
View File

@@ -0,0 +1,105 @@
import unittest
import mlx.core as mx
import mlx_tests
# Don't inherit from MLXTestCase to avoid call to setUp
class TestDefaultDevice(unittest.TestCase):
def test_mlx_default_device(self):
device = mx.default_device()
if mx.metal.is_available():
self.assertEqual(device, mx.Device(mx.gpu))
self.assertEqual(str(device), "Device(gpu, 0)")
self.assertEqual(device, mx.gpu)
self.assertEqual(mx.gpu, device)
else:
self.assertEqual(device.type, mx.Device(mx.cpu))
with self.assertRaises(ValueError):
mx.set_default_device(mx.gpu)
class TestDevice(mlx_tests.MLXTestCase):
def test_device(self):
device = mx.default_device()
cpu = mx.Device(mx.cpu)
mx.set_default_device(cpu)
self.assertEqual(mx.default_device(), cpu)
self.assertEqual(str(cpu), "Device(cpu, 0)")
mx.set_default_device(mx.cpu)
self.assertEqual(mx.default_device(), mx.cpu)
self.assertEqual(cpu, mx.cpu)
self.assertEqual(mx.cpu, cpu)
# Restore device
mx.set_default_device(device)
def test_op_on_device(self):
x = mx.array(1.0)
y = mx.array(1.0)
a = mx.add(x, y, stream=None)
b = mx.add(x, y, stream=mx.default_device())
self.assertEqual(a.item(), b.item())
b = mx.add(x, y, stream=mx.cpu)
self.assertEqual(a.item(), b.item())
if mx.metal.is_available():
b = mx.add(x, y, stream=mx.gpu)
self.assertEqual(a.item(), b.item())
class TestStream(mlx_tests.MLXTestCase):
def test_stream(self):
s1 = mx.default_stream(mx.default_device())
self.assertEqual(s1.device, mx.default_device())
s2 = mx.new_stream(mx.default_device())
self.assertEqual(s2.device, mx.default_device())
self.assertNotEqual(s1, s2)
if mx.metal.is_available():
s_gpu = mx.default_stream(mx.gpu)
self.assertEqual(s_gpu.device, mx.gpu)
else:
with self.assertRaises(ValueError):
mx.default_stream(mx.gpu)
s_cpu = mx.default_stream(mx.cpu)
self.assertEqual(s_cpu.device, mx.cpu)
s_cpu = mx.new_stream(mx.cpu)
self.assertEqual(s_cpu.device, mx.cpu)
if mx.metal.is_available():
s_gpu = mx.new_stream(mx.gpu)
self.assertEqual(s_gpu.device, mx.gpu)
else:
with self.assertRaises(ValueError):
mx.new_stream(mx.gpu)
def test_op_on_stream(self):
x = mx.array(1.0)
y = mx.array(1.0)
a = mx.add(x, y, stream=mx.default_stream(mx.default_device()))
if mx.metal.is_available():
b = mx.add(x, y, stream=mx.default_stream(mx.gpu))
self.assertEqual(a.item(), b.item())
s_gpu = mx.new_stream(mx.gpu)
b = mx.add(x, y, stream=s_gpu)
self.assertEqual(a.item(), b.item())
b = mx.add(x, y, stream=mx.default_stream(mx.cpu))
self.assertEqual(a.item(), b.item())
s_cpu = mx.new_stream(mx.cpu)
b = mx.add(x, y, stream=s_cpu)
self.assertEqual(a.item(), b.item())
if __name__ == "__main__":
unittest.main()

34
python/tests/test_eval.py Normal file
View File

@@ -0,0 +1,34 @@
from functools import partial
import unittest
import mlx.core as mx
import mlx_tests
class TestEval(mlx_tests.MLXTestCase):
def test_eval(self):
arrs = [mx.ones((2, 2)) for _ in range(4)]
mx.eval(*arrs)
for x in arrs:
self.assertEqual(x.tolist(), [[1, 1], [1, 1]])
def test_retain_graph(self):
def fun(x, retain_graph):
y = 3 * x
mx.eval(y, retain_graph=retain_graph)
return 2 * y
dfun_dx_1 = mx.grad(partial(fun, retain_graph=False))
dfun_dx_2 = mx.grad(partial(fun, retain_graph=True))
with self.assertRaises(ValueError):
dfun_dx_1(mx.array(1.0))
y = dfun_dx_2(mx.array(1.0))
self.assertEqual(y.item(), 6.0)
if __name__ == "__main__":
unittest.main()

90
python/tests/test_fft.py Normal file
View File

@@ -0,0 +1,90 @@
import unittest
import itertools
import mlx.core as mx
import numpy as np
import mlx_tests
class TestFFT(mlx_tests.MLXTestCase):
def check_mx_np(self, op, a_np, axes, s):
with self.subTest(op=op, axes=axes, s=s):
op_np = getattr(np.fft, op)
op_mx = getattr(mx.fft, op)
out_np = op_np(a_np, s=s, axes=axes)
a_mx = mx.array(a_np)
out_mx = op_mx(a_mx, s=s, axes=axes)
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
def test_fft(self):
default = mx.default_device()
mx.set_default_device(mx.cpu)
def check_mx_np(op_mx, op_np, a_np, **kwargs):
out_np = op_np(a_np, **kwargs)
a_mx = mx.array(a_np)
out_mx = op_mx(a_mx, **kwargs)
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
r = np.random.rand(100).astype(np.float32)
i = np.random.rand(100).astype(np.float32)
a_np = r + 1j * i
check_mx_np(mx.fft.fft, np.fft.fft, a_np)
# Check with slicing and padding
r = np.random.rand(100).astype(np.float32)
i = np.random.rand(100).astype(np.float32)
a_np = r + 1j * i
check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=80)
check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=120)
# Check different axes
r = np.random.rand(100, 100).astype(np.float32)
i = np.random.rand(100, 100).astype(np.float32)
a_np = r + 1j * i
check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=0)
check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=1)
# Check real fft
a_np = np.random.rand(100).astype(np.float32)
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np)
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=80)
check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=120)
# Check real inverse
r = np.random.rand(100, 100).astype(np.float32)
i = np.random.rand(100, 100).astype(np.float32)
a_np = r + 1j * i
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np)
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=80)
check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=120)
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np)
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np, n=80)
check_mx_np(mx.fft.irfft, np.fft.irfft, a_np, n=120)
mx.set_default_device(default)
def test_fftn(self):
default = mx.default_device()
mx.set_default_device(mx.cpu)
r = np.random.randn(8, 8, 8).astype(np.float32)
i = np.random.randn(8, 8, 8).astype(np.float32)
a = r + 1j * i
axes = [None, (1, 2), (2, 1), (0, 2)]
shapes = [None, (10, 5), (5, 10)]
ops = ["fft2", "ifft2", "rfft2", "irfft2", "fftn", "ifftn", "rfftn", "irfftn"]
for op, ax, s in itertools.product(ops, axes, shapes):
x = a
if op in ["rfft2", "rfftn"]:
x = r
self.check_mx_np(op, x, axes=ax, s=s)
mx.set_default_device(default)
if __name__ == "__main__":
unittest.main()

1283
python/tests/test_ops.py Normal file

File diff suppressed because it is too large Load Diff

118
python/tests/test_reduce.py Normal file
View File

@@ -0,0 +1,118 @@
import unittest
from itertools import permutations, combinations
import mlx.core as mx
import numpy as np
import mlx_tests
class TestReduce(mlx_tests.MLXTestCase):
def test_axis_permutation_sums(self):
x_npy = np.random.randn(5, 5, 5, 5, 5).astype(np.float32)
x_mlx = mx.array(x_npy)
for t in permutations(range(5)):
with self.subTest(t=t):
y_npy = np.transpose(x_npy, t)
y_mlx = mx.transpose(x_mlx, t)
for n in range(1, 6):
for a in combinations(range(5), n):
with self.subTest(a=a):
z_npy = np.sum(y_npy, axis=a)
z_mlx = mx.sum(y_mlx, axis=a)
mx.eval(z_mlx)
self.assertTrue(
np.allclose(z_npy, np.array(z_mlx), atol=1e-4)
)
def test_expand_sums(self):
x_npy = np.random.randn(5, 1, 5, 1, 5, 1).astype(np.float32)
x_mlx = mx.array(x_npy)
for m in range(1, 4):
for ax in combinations([1, 3, 5], m):
shape = np.array([5, 1, 5, 1, 5, 1])
shape[list(ax)] = 5
shape = shape.tolist()
with self.subTest(shape=shape):
y_npy = np.broadcast_to(x_npy, shape)
y_mlx = mx.broadcast_to(x_mlx, shape)
for n in range(1, 7):
for a in combinations(range(6), n):
with self.subTest(a=a):
z_npy = np.sum(y_npy, axis=a) / 1000
z_mlx = mx.sum(y_mlx, axis=a) / 1000
mx.eval(z_mlx)
self.assertTrue(
np.allclose(z_npy, np.array(z_mlx), atol=1e-4)
)
def test_dtypes(self):
int_dtypes = [
"int8",
"int16",
"int32",
"uint8",
"uint16",
"uint32",
]
float_dtypes = ["float32"]
for dtype in int_dtypes + float_dtypes:
with self.subTest(dtype=dtype):
x = np.random.uniform(0, 2, size=(3, 3, 3)).astype(getattr(np, dtype))
y = mx.array(x)
for op in ("sum", "prod", "min", "max"):
with self.subTest(op=op):
np_op = getattr(np, op)
mlx_op = getattr(mx, op)
for axes in (None, 0, 1, 2, (0, 1), (0, 2), (1, 2), (0, 1, 2)):
with self.subTest(axes=axes):
if op in ("sum", "prod"):
r_np = np_op(
x, axis=axes, dtype=(getattr(np, dtype))
)
else:
r_np = np_op(x, axis=axes)
r_mlx = mlx_op(y, axis=axes)
mx.eval(r_mlx)
self.assertTrue(np.allclose(r_np, r_mlx, atol=1e-4))
def test_arg_reduce(self):
dtypes = [
"uint8",
"uint16",
"uint32",
"uint64",
"int8",
"int16",
"int32",
"int64",
"float16",
"float32",
]
for dtype in dtypes:
with self.subTest(dtype=dtype):
data = np.random.rand(10, 12, 13).astype(getattr(np, dtype))
x = mx.array(data)
for op in ["argmin", "argmax"]:
for axis in range(3):
for kd in [True, False]:
a = getattr(mx, op)(x, axis, kd)
b = getattr(np, op)(data, axis, keepdims=kd)
self.assertEqual(a.tolist(), b.tolist())
for op in ["argmin", "argmax"]:
a = getattr(mx, op)(x, keepdims=True)
b = getattr(np, op)(data, keepdims=True)
self.assertEqual(a.tolist(), b.tolist())
a = getattr(mx, op)(x)
b = getattr(np, op)(data)
self.assertEqual(a.item(), b)
if __name__ == "__main__":
unittest.main(failfast=True)