mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
Merge b3c1aaafd2
into b8022c578a
This commit is contained in:
commit
8f04b2f6ac
@ -224,6 +224,13 @@ def relu6(x):
|
|||||||
mx.eval(y)
|
mx.eval(y)
|
||||||
|
|
||||||
|
|
||||||
|
def relu_squared(x):
|
||||||
|
y = x
|
||||||
|
for i in range(100):
|
||||||
|
y = nn.relu_squared(y)
|
||||||
|
mx.eval(y)
|
||||||
|
|
||||||
|
|
||||||
def softplus(x):
|
def softplus(x):
|
||||||
y = x
|
y = x
|
||||||
for i in range(100):
|
for i in range(100):
|
||||||
@ -458,6 +465,9 @@ if __name__ == "__main__":
|
|||||||
elif args.benchmark == "relu6":
|
elif args.benchmark == "relu6":
|
||||||
print(bench(relu6, x))
|
print(bench(relu6, x))
|
||||||
|
|
||||||
|
elif args.benchmark == "relu_squared":
|
||||||
|
print(bench(relu_squared, x))
|
||||||
|
|
||||||
elif args.benchmark == "celu":
|
elif args.benchmark == "celu":
|
||||||
print(bench(celu, x))
|
print(bench(celu, x))
|
||||||
|
|
||||||
|
@ -157,6 +157,15 @@ def relu6(x):
|
|||||||
sync_if_needed(x)
|
sync_if_needed(x)
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def relu_squared(x):
|
||||||
|
y = x
|
||||||
|
for i in range(100):
|
||||||
|
y = torch.nn.functional.relu(y)
|
||||||
|
y = torch.square(y)
|
||||||
|
sync_if_needed(x)
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def softplus(x):
|
def softplus(x):
|
||||||
y = x
|
y = x
|
||||||
@ -407,6 +416,9 @@ if __name__ == "__main__":
|
|||||||
elif args.benchmark == "relu6":
|
elif args.benchmark == "relu6":
|
||||||
print(bench(relu6, x))
|
print(bench(relu6, x))
|
||||||
|
|
||||||
|
elif args.benchmark == "relu_squared":
|
||||||
|
print(bench(relu_squared, x))
|
||||||
|
|
||||||
elif args.benchmark == "softplus":
|
elif args.benchmark == "softplus":
|
||||||
print(bench(softplus, x))
|
print(bench(softplus, x))
|
||||||
|
|
||||||
|
@ -207,6 +207,8 @@ if __name__ == "__main__":
|
|||||||
compare_filtered("elu --size 32x16x1024 --cpu")
|
compare_filtered("elu --size 32x16x1024 --cpu")
|
||||||
compare_filtered("relu6 --size 32x16x1024")
|
compare_filtered("relu6 --size 32x16x1024")
|
||||||
compare_filtered("relu6 --size 32x16x1024 --cpu")
|
compare_filtered("relu6 --size 32x16x1024 --cpu")
|
||||||
|
compare_filtered("relu_squared --size 32x16x1024")
|
||||||
|
compare_filtered("relu_squared --size 32x16x1024 --cpu")
|
||||||
compare_filtered("softplus --size 32x16x1024")
|
compare_filtered("softplus --size 32x16x1024")
|
||||||
compare_filtered("softplus --size 32x16x1024 --cpu")
|
compare_filtered("softplus --size 32x16x1024 --cpu")
|
||||||
compare_filtered("celu --size 32x16x1024")
|
compare_filtered("celu --size 32x16x1024")
|
||||||
|
@ -28,6 +28,7 @@ simple functions.
|
|||||||
prelu
|
prelu
|
||||||
relu
|
relu
|
||||||
relu6
|
relu6
|
||||||
|
relu_squared
|
||||||
selu
|
selu
|
||||||
sigmoid
|
sigmoid
|
||||||
silu
|
silu
|
||||||
|
@ -51,6 +51,7 @@ Layers
|
|||||||
RMSNorm
|
RMSNorm
|
||||||
ReLU
|
ReLU
|
||||||
ReLU6
|
ReLU6
|
||||||
|
ReLUSquared
|
||||||
RNN
|
RNN
|
||||||
RoPE
|
RoPE
|
||||||
SELU
|
SELU
|
||||||
|
@ -16,6 +16,7 @@ from mlx.nn.layers.activations import (
|
|||||||
PReLU,
|
PReLU,
|
||||||
ReLU,
|
ReLU,
|
||||||
ReLU6,
|
ReLU6,
|
||||||
|
ReLUSquared,
|
||||||
Sigmoid,
|
Sigmoid,
|
||||||
SiLU,
|
SiLU,
|
||||||
Softmax,
|
Softmax,
|
||||||
@ -41,6 +42,7 @@ from mlx.nn.layers.activations import (
|
|||||||
prelu,
|
prelu,
|
||||||
relu,
|
relu,
|
||||||
relu6,
|
relu6,
|
||||||
|
relu_squared,
|
||||||
selu,
|
selu,
|
||||||
sigmoid,
|
sigmoid,
|
||||||
silu,
|
silu,
|
||||||
|
@ -71,6 +71,17 @@ def relu6(x):
|
|||||||
return mx.minimum(mx.maximum(x, 0), 6.0)
|
return mx.minimum(mx.maximum(x, 0), 6.0)
|
||||||
|
|
||||||
|
|
||||||
|
@partial(mx.compile, shapeless=True)
|
||||||
|
def relu_squared(x):
|
||||||
|
r"""Applies the Rectified Linear Unit squared.
|
||||||
|
|
||||||
|
Applies :math:`\max(x, 0)^2` element wise.
|
||||||
|
|
||||||
|
Reference: https://arxiv.org/abs/2109.08668v2
|
||||||
|
"""
|
||||||
|
return relu(x).square()
|
||||||
|
|
||||||
|
|
||||||
@partial(mx.compile, shapeless=True)
|
@partial(mx.compile, shapeless=True)
|
||||||
def softmax(x, axis=-1):
|
def softmax(x, axis=-1):
|
||||||
r"""Applies the Softmax function.
|
r"""Applies the Softmax function.
|
||||||
@ -420,6 +431,18 @@ class ReLU6(Module):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
@_make_activation_module(relu_squared)
|
||||||
|
class ReLUSquared(Module):
|
||||||
|
r"""Applies the Rectified Linear Unit squared.
|
||||||
|
|
||||||
|
Applies :math:`\max(x, 0)^2` element wise.
|
||||||
|
|
||||||
|
Reference: https://arxiv.org/abs/2109.08668v2
|
||||||
|
|
||||||
|
See :func:`relu_squared` for the functional equivalent.
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
@_make_activation_module(softmax)
|
@_make_activation_module(softmax)
|
||||||
class Softmax(Module):
|
class Softmax(Module):
|
||||||
r"""Applies the Softmax function.
|
r"""Applies the Softmax function.
|
||||||
|
@ -855,6 +855,13 @@ class TestLayers(mlx_tests.MLXTestCase):
|
|||||||
self.assertEqual(y.shape, (3,))
|
self.assertEqual(y.shape, (3,))
|
||||||
self.assertEqual(y.dtype, mx.float32)
|
self.assertEqual(y.dtype, mx.float32)
|
||||||
|
|
||||||
|
def test_relu_squared(self):
|
||||||
|
x = mx.array([-1.0, 0.0, 1.0, 2.0, 3.0])
|
||||||
|
y = nn.relu_squared(x)
|
||||||
|
self.assertTrue(mx.array_equal(y, mx.array([0.0, 0.0, 1.0, 4.0, 9.0])))
|
||||||
|
self.assertEqual(y.shape, (5,))
|
||||||
|
self.assertEqual(y.dtype, mx.float32)
|
||||||
|
|
||||||
def test_leaky_relu(self):
|
def test_leaky_relu(self):
|
||||||
x = mx.array([1.0, -1.0, 0.0])
|
x = mx.array([1.0, -1.0, 0.0])
|
||||||
y = nn.leaky_relu(x)
|
y = nn.leaky_relu(x)
|
||||||
|
Loading…
Reference in New Issue
Block a user