mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-22 21:16:47 +08:00
NCCL backend (#2476)
This commit is contained in:
parent
e843c4d8d5
commit
9392fc3f88
@ -222,6 +222,7 @@ jobs:
|
||||
sudo apt-get update
|
||||
sudo apt-get install libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install libnccl2 libnccl-dev
|
||||
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
|
||||
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
|
||||
rm -rf ccache-4.11.3-linux-x86_64
|
||||
|
54
cmake/FindNCCL.cmake
Normal file
54
cmake/FindNCCL.cmake
Normal file
@ -0,0 +1,54 @@
|
||||
# FindNCCL.cmake This module finds the NVIDIA NCCL library and its include
|
||||
# directories.
|
||||
|
||||
set(NCCL_ROOT_DIR
|
||||
$ENV{NCCL_ROOT_DIR}
|
||||
CACHE PATH "Folder contains NVIDIA NCCL")
|
||||
|
||||
find_path(
|
||||
NCCL_INCLUDE_DIRS
|
||||
NAMES nccl.h
|
||||
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/include)
|
||||
|
||||
if($ENV{USE_STATIC_NCCL})
|
||||
message(
|
||||
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
|
||||
set(NCCL_LIBNAME "libnccl_static.a")
|
||||
else()
|
||||
set(NCCL_LIBNAME "nccl")
|
||||
endif()
|
||||
|
||||
find_library(
|
||||
NCCL_LIBRARIES
|
||||
NAMES ${NCCL_LIBNAME}
|
||||
HINTS ${NCCL_LIB_DIR}
|
||||
${NCCL_ROOT_DIR}
|
||||
${NCCL_ROOT_DIR}/lib
|
||||
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
|
||||
${NCCL_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
|
||||
NCCL_LIBRARIES)
|
||||
|
||||
if(NCCL_FOUND)
|
||||
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
|
||||
message(
|
||||
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
|
||||
file(
|
||||
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
|
||||
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
|
||||
LIMIT_COUNT 1)
|
||||
if(NCCL_MAJOR_VERSION_DEFINED)
|
||||
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
|
||||
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
|
||||
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
|
||||
endif()
|
||||
message(
|
||||
STATUS
|
||||
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
|
||||
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
|
||||
endif()
|
@ -271,7 +271,7 @@ and the CUDA toolkit. For example on Ubuntu, run the following:
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
apt-get update -y
|
||||
apt-get -y install cuda-toolkit-12-9
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev libcudnn9-dev-cuda-12 -y
|
||||
|
||||
|
||||
When building either the Python or C++ APIs make sure to pass the cmake flag
|
||||
|
@ -22,6 +22,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cudnn_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
|
51
mlx/backend/cuda/distributed.cu
Normal file
51
mlx/backend/cuda/distributed.cu
Normal file
@ -0,0 +1,51 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/distributed/primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core {
|
||||
namespace distributed {
|
||||
void AllReduce::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 1);
|
||||
assert(outputs.size() == 1);
|
||||
|
||||
auto& input = inputs[0];
|
||||
auto& output = outputs[0];
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
|
||||
if (input.is_donatable()) {
|
||||
output.copy_shared_buffer(input);
|
||||
} else {
|
||||
output.set_data(allocator::malloc(output.nbytes()));
|
||||
}
|
||||
|
||||
encoder.set_input_array(input);
|
||||
encoder.set_output_array(output);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
auto& s = stream();
|
||||
|
||||
switch (reduce_type_) {
|
||||
case Sum:
|
||||
distributed::detail::all_sum(group(), input, output, s);
|
||||
break;
|
||||
case Max:
|
||||
distributed::detail::all_max(group(), input, output, s);
|
||||
break;
|
||||
case Min:
|
||||
distributed::detail::all_min(group(), input, output, s);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"Only all reduce sum, max, and min are supported.");
|
||||
}
|
||||
}
|
||||
} // namespace distributed
|
||||
} // namespace mlx::core
|
@ -42,7 +42,6 @@ NO_GPU_MULTI(Eig)
|
||||
NO_GPU_MULTI(Eigh)
|
||||
|
||||
namespace distributed {
|
||||
NO_GPU_MULTI(AllReduce)
|
||||
NO_GPU_MULTI(AllGather)
|
||||
NO_GPU_MULTI(Send)
|
||||
NO_GPU_MULTI(Recv)
|
||||
|
@ -6,3 +6,4 @@ target_sources(
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/mpi)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/ring)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/nccl)
|
||||
|
@ -5,12 +5,17 @@
|
||||
#include "mlx/distributed/distributed.h"
|
||||
#include "mlx/distributed/distributed_impl.h"
|
||||
#include "mlx/distributed/mpi/mpi.h"
|
||||
#include "mlx/distributed/nccl/nccl.h"
|
||||
#include "mlx/distributed/ring/ring.h"
|
||||
|
||||
namespace mlx::core::distributed {
|
||||
|
||||
namespace detail {
|
||||
|
||||
Stream communication_stream(Group group, StreamOrDevice s /* = {} */) {
|
||||
return group.raw_group()->communication_stream(s);
|
||||
}
|
||||
|
||||
void all_sum(Group group, const array& input, array& output, Stream stream) {
|
||||
group.raw_group()->all_sum(input, output, stream);
|
||||
}
|
||||
@ -37,6 +42,10 @@ void recv(Group group, array& out, int src, Stream stream) {
|
||||
|
||||
class EmptyGroup : public GroupImpl {
|
||||
public:
|
||||
Stream communication_stream(StreamOrDevice s) override {
|
||||
return to_stream(s);
|
||||
}
|
||||
|
||||
int rank() override {
|
||||
return 0;
|
||||
}
|
||||
@ -80,7 +89,7 @@ class EmptyGroup : public GroupImpl {
|
||||
} // namespace detail
|
||||
|
||||
bool is_available() {
|
||||
return mpi::is_available() || ring::is_available();
|
||||
return mpi::is_available() || ring::is_available() || nccl::is_available();
|
||||
}
|
||||
|
||||
int Group::rank() const {
|
||||
@ -111,6 +120,8 @@ Group init(bool strict /* = false */, const std::string& bk /* = "any" */) {
|
||||
group = mpi::init(strict);
|
||||
} else if (bk == "ring") {
|
||||
group = ring::init(strict);
|
||||
} else if (bk == "nccl") {
|
||||
group = nccl::init(strict);
|
||||
} else if (bk == "any") {
|
||||
group = ring::init(false);
|
||||
bk_ = "ring";
|
||||
|
@ -5,6 +5,7 @@
|
||||
#include <memory>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core::distributed {
|
||||
|
||||
|
@ -13,10 +13,15 @@ class GroupImpl {
|
||||
public:
|
||||
virtual ~GroupImpl() {}
|
||||
|
||||
// Choose the stream this communication group can operate on
|
||||
virtual Stream communication_stream(StreamOrDevice s = {}) = 0;
|
||||
|
||||
// Group operations
|
||||
virtual int rank() = 0;
|
||||
virtual int size() = 0;
|
||||
virtual std::shared_ptr<GroupImpl> split(int color, int key = -1) = 0;
|
||||
|
||||
// Actual communication operations
|
||||
virtual void all_sum(const array& input, array& output, Stream stream) = 0;
|
||||
virtual void all_gather(const array& input, array& output, Stream stream) = 0;
|
||||
virtual void send(const array& input, int dst, Stream stream) = 0;
|
||||
@ -25,6 +30,9 @@ class GroupImpl {
|
||||
virtual void all_min(const array& input, array& output, Stream stream) = 0;
|
||||
};
|
||||
|
||||
/* Define the MLX stream that the communication should happen in. */
|
||||
Stream communication_stream(Group group, StreamOrDevice s = {});
|
||||
|
||||
/* Perform an all reduce sum operation */
|
||||
void all_sum(Group group, const array& input, array& output, Stream stream);
|
||||
|
||||
|
@ -349,6 +349,10 @@ class MPIGroup : public GroupImpl {
|
||||
}
|
||||
}
|
||||
|
||||
Stream communication_stream(StreamOrDevice s) override {
|
||||
return to_stream(s, Device::cpu);
|
||||
}
|
||||
|
||||
int rank() override {
|
||||
if (rank_ < 0) {
|
||||
mpi().rank(comm_, &rank_);
|
||||
|
8
mlx/distributed/nccl/CMakeLists.txt
Normal file
8
mlx/distributed/nccl/CMakeLists.txt
Normal file
@ -0,0 +1,8 @@
|
||||
if(MLX_BUILD_CUDA)
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/nccl.cpp)
|
||||
find_package(NCCL REQUIRED)
|
||||
target_link_libraries(mlx PRIVATE ${NCCL_LIBRARIES})
|
||||
target_include_directories(mlx PRIVATE ${NCCL_INCLUDE_DIRS})
|
||||
else()
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/no_nccl.cpp)
|
||||
endif()
|
359
mlx/distributed/nccl/nccl.cpp
Normal file
359
mlx/distributed/nccl/nccl.cpp
Normal file
@ -0,0 +1,359 @@
|
||||
#include <arpa/inet.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <nccl.h>
|
||||
#include <netdb.h>
|
||||
#include <sys/socket.h>
|
||||
#include <unistd.h>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include <mutex>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <type_traits>
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/distributed/distributed.h"
|
||||
#include "mlx/distributed/distributed_impl.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core::distributed::nccl {
|
||||
|
||||
#define CHECK_CUDA(cmd) \
|
||||
do { \
|
||||
cudaError_t e = cmd; \
|
||||
if (e != cudaSuccess) { \
|
||||
fprintf( \
|
||||
stderr, \
|
||||
"CUDA error %s:%d '%s'\n", \
|
||||
__FILE__, \
|
||||
__LINE__, \
|
||||
cudaGetErrorString(e)); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define CHECK_NCCL(cmd) \
|
||||
do { \
|
||||
ncclResult_t r = cmd; \
|
||||
if (r != ncclSuccess) { \
|
||||
fprintf( \
|
||||
stderr, \
|
||||
"NCCL error %s:%d '%s'\n", \
|
||||
__FILE__, \
|
||||
__LINE__, \
|
||||
ncclGetErrorString(r)); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
#define MLX_NCCL_TYPE_LIST(X) \
|
||||
X(int8_t, ncclChar) \
|
||||
X(uint8_t, ncclUint8) \
|
||||
X(int32_t, ncclInt) \
|
||||
X(uint32_t, ncclUint32) \
|
||||
X(int64_t, ncclInt64) \
|
||||
X(uint64_t, ncclUint64) \
|
||||
X(float16_t, ncclHalf) \
|
||||
X(bfloat16_t, ncclBfloat16) \
|
||||
X(float, ncclFloat) \
|
||||
X(double, ncclDouble)
|
||||
|
||||
template <class>
|
||||
struct nccl_map {
|
||||
static constexpr bool ok = false; // default: unsupported
|
||||
};
|
||||
|
||||
#define MLX_DEF_NCCL_MAP(T, E) \
|
||||
template <> \
|
||||
struct nccl_map<T> { \
|
||||
static constexpr bool ok = true; \
|
||||
static constexpr ncclDataType_t value = E; \
|
||||
};
|
||||
|
||||
MLX_NCCL_TYPE_LIST(MLX_DEF_NCCL_MAP)
|
||||
#undef MLX_DEF_NCCL_MAP
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <typename F>
|
||||
void dispatch_dtype(const array& arr, F&& f) {
|
||||
dispatch_all_types(arr.dtype(), [&](auto type_tag) {
|
||||
using T = MLX_GET_TYPE(type_tag);
|
||||
if constexpr (nccl_map<T>::ok) {
|
||||
f(type_tag, nccl_map<T>::value);
|
||||
} else {
|
||||
throw std::invalid_argument("[nccl] Unknown or unsupported dtype");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
inline void sendAll(int sock, const void* buf, size_t len) {
|
||||
const char* ptr = reinterpret_cast<const char*>(buf);
|
||||
while (len > 0) {
|
||||
ssize_t sent = send(sock, ptr, len, 0);
|
||||
if (sent <= 0) {
|
||||
perror("send");
|
||||
exit(1);
|
||||
}
|
||||
ptr += sent;
|
||||
len -= sent;
|
||||
}
|
||||
}
|
||||
|
||||
inline void recvAll(int sock, void* buf, size_t len) {
|
||||
char* ptr = reinterpret_cast<char*>(buf);
|
||||
while (len > 0) {
|
||||
ssize_t rec = recv(sock, ptr, len, 0);
|
||||
if (rec <= 0) {
|
||||
perror("recv");
|
||||
exit(1);
|
||||
}
|
||||
ptr += rec;
|
||||
len -= rec;
|
||||
}
|
||||
}
|
||||
|
||||
inline void bootstrap_unique_id(
|
||||
ncclUniqueId& id,
|
||||
int rank,
|
||||
int size,
|
||||
const std::string& initMethod) {
|
||||
// Parse the init method to extract the host and port
|
||||
if (initMethod.rfind("tcp://", 0) != 0)
|
||||
throw;
|
||||
auto hostport = initMethod.substr(6);
|
||||
auto colon = hostport.find(':');
|
||||
std::string host = hostport.substr(0, colon);
|
||||
int port = std::stoi(hostport.substr(colon + 1));
|
||||
|
||||
if (rank == 0) {
|
||||
// create a unique id on the rank 0
|
||||
CHECK_NCCL(ncclGetUniqueId(&id));
|
||||
|
||||
// create a socket to send the unique id to all other ranks
|
||||
int sock = socket(AF_INET, SOCK_STREAM, 0);
|
||||
|
||||
if (sock < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] Couldn't create socket (error: " << errno << ")";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
sockaddr_in serv = {};
|
||||
serv.sin_family = AF_INET;
|
||||
serv.sin_addr.s_addr = htonl(INADDR_ANY);
|
||||
serv.sin_port = htons(port);
|
||||
|
||||
int reuse = 1;
|
||||
// Without this, if rank-0 crashes or restarts process quickly,
|
||||
// the OS might refuse to let binding to the same port, so reuse
|
||||
|
||||
if (setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &reuse, sizeof(reuse)) < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] setsockopt() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
if (bind(sock, reinterpret_cast<sockaddr*>(&serv), sizeof(serv)) < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] bind() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
if (listen(sock, size - 1) < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] listen() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
for (int peer = 1; peer < size; ++peer) {
|
||||
int conn = accept(sock, nullptr, nullptr);
|
||||
if (conn < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] accept() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
sendAll(conn, &id, sizeof(id));
|
||||
close(conn);
|
||||
}
|
||||
close(sock);
|
||||
|
||||
} else {
|
||||
// Here just wanted to make show that rank 0 has enough time to bind
|
||||
// so we will retry to connect until max attempts
|
||||
|
||||
int sock = socket(AF_INET, SOCK_STREAM, 0);
|
||||
if (sock < 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] socket() failed: " << strerror(errno);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
hostent* he = gethostbyname(host.c_str());
|
||||
if (!he) {
|
||||
throw std::runtime_error("[nccl] lookup failed for host: " + host);
|
||||
}
|
||||
sockaddr_in serv = {};
|
||||
serv.sin_family = AF_INET;
|
||||
memcpy(&serv.sin_addr, he->h_addr_list[0], he->h_length);
|
||||
serv.sin_port = htons(port);
|
||||
|
||||
const int max_retries = 30;
|
||||
int attempt = 0;
|
||||
bool connected = false;
|
||||
|
||||
for (attempt = 0; attempt < max_retries; ++attempt) {
|
||||
if (connect(sock, reinterpret_cast<sockaddr*>(&serv), sizeof(serv)) ==
|
||||
0) {
|
||||
connected = true;
|
||||
std::cout << "[Rank " << rank << "] Connected successfully on attempt "
|
||||
<< attempt + 1 << std::endl;
|
||||
break;
|
||||
}
|
||||
if (errno != ECONNREFUSED) {
|
||||
break;
|
||||
}
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(500));
|
||||
}
|
||||
|
||||
if (!connected) {
|
||||
std::ostringstream msg;
|
||||
msg << "[Rank " << rank << "] connect() failed after " << attempt
|
||||
<< " retries: " << strerror(errno);
|
||||
close(sock);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
recvAll(sock, &id, sizeof(id));
|
||||
close(sock);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
using GroupImpl = mlx::core::distributed::detail::GroupImpl;
|
||||
class NCCLGroup : public GroupImpl {
|
||||
public:
|
||||
NCCLGroup(int worldRank, int worldSize, const std::string initMethod)
|
||||
: rank_(worldRank),
|
||||
size_(worldSize),
|
||||
comm_(nullptr),
|
||||
initMethod_(initMethod) {
|
||||
if (initialized_)
|
||||
return;
|
||||
int ndev;
|
||||
CHECK_CUDA(cudaGetDeviceCount(&ndev));
|
||||
CHECK_CUDA(cudaSetDevice(rank_ % ndev));
|
||||
detail::bootstrap_unique_id(uniqueId_, rank_, size_, initMethod_);
|
||||
CHECK_NCCL(ncclCommInitRank(&comm_, size_, uniqueId_, rank_));
|
||||
initialized_ = true;
|
||||
}
|
||||
|
||||
~NCCLGroup() {
|
||||
ncclCommDestroy(comm_);
|
||||
ncclGroupEnd();
|
||||
initialized_ = false;
|
||||
}
|
||||
|
||||
Stream communication_stream(StreamOrDevice s) override {
|
||||
return to_stream(s, Device::gpu);
|
||||
}
|
||||
|
||||
int rank() override {
|
||||
return rank_;
|
||||
}
|
||||
|
||||
int size() override {
|
||||
return size_;
|
||||
}
|
||||
|
||||
void all_sum(const array& input, array& output, Stream stream) override {
|
||||
detail::dispatch_dtype(input, [&](auto type_tag, ncclDataType_t dt) {
|
||||
using T = typename decltype(type_tag)::type;
|
||||
all_reduce_impl<T>(input, output, stream, dt, ncclSum);
|
||||
});
|
||||
}
|
||||
|
||||
virtual std::shared_ptr<GroupImpl> split(int color, int key = -1) override {
|
||||
throw std::runtime_error("[nccl] Group split not supported.");
|
||||
}
|
||||
|
||||
void all_gather(const array& input, array& output, Stream stream) override {
|
||||
throw std::runtime_error(
|
||||
"[nccl] All gather not supported in NCCL backend.");
|
||||
}
|
||||
|
||||
void send(const array& input, int dst, Stream stream) override {
|
||||
throw std::runtime_error("[nccl] Send not supported in NCCL backend.");
|
||||
}
|
||||
|
||||
void recv(array& output, int src, Stream stream) override {
|
||||
throw std::runtime_error("[nccl] Recv not supported in NCCL backend.");
|
||||
}
|
||||
|
||||
void all_max(const array& input, array& output, Stream stream) override {
|
||||
throw std::runtime_error("[nccl] All max not supported in NCCL backend.");
|
||||
}
|
||||
|
||||
void all_min(const array& input, array& output, Stream stream) override {
|
||||
throw std::runtime_error("[nccl] All min not supported in NCCL backend.");
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void all_reduce_impl(
|
||||
const array& input,
|
||||
array& output,
|
||||
Stream stream,
|
||||
ncclDataType_t dt,
|
||||
ncclRedOp_t op) {
|
||||
auto& encoder = cu::get_command_encoder(stream);
|
||||
|
||||
CHECK_NCCL(ncclAllReduce(
|
||||
input.data<T>(),
|
||||
output.data<T>(),
|
||||
input.size(),
|
||||
dt,
|
||||
op,
|
||||
comm_,
|
||||
encoder.stream()));
|
||||
}
|
||||
|
||||
int rank_, size_;
|
||||
std::string initMethod_;
|
||||
ncclUniqueId uniqueId_;
|
||||
ncclComm_t comm_;
|
||||
bool initialized_ = false;
|
||||
};
|
||||
|
||||
bool is_available() {
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
static std::string get_env_var_or_throw(const char* env_var_name) {
|
||||
const char* value = std::getenv(env_var_name);
|
||||
if (value == nullptr) {
|
||||
std::ostringstream msg;
|
||||
msg << "[nccl] Required environment variable '" << env_var_name
|
||||
<< "' is not set. "
|
||||
<< "Please set it before initializing the distributed backend.";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
return std::string(value);
|
||||
}
|
||||
} // namespace detail
|
||||
|
||||
std::shared_ptr<GroupImpl> init(bool strict /* = false */) {
|
||||
std::string host = detail::get_env_var_or_throw("NCCL_HOST_IP");
|
||||
std::string port = detail::get_env_var_or_throw("NCCL_PORT");
|
||||
std::string rank_str = detail::get_env_var_or_throw("MLX_RANK");
|
||||
std::string n_nodes_str = detail::get_env_var_or_throw("MLX_WORLD_SIZE");
|
||||
|
||||
int rank = std::stoi(rank_str);
|
||||
int n_nodes = std::stoi(n_nodes_str);
|
||||
std::string init_method = "tcp://" + host + ":" + port;
|
||||
|
||||
return std::make_shared<NCCLGroup>(rank, n_nodes, init_method);
|
||||
}
|
||||
} // namespace mlx::core::distributed::nccl
|
12
mlx/distributed/nccl/nccl.h
Normal file
12
mlx/distributed/nccl/nccl.h
Normal file
@ -0,0 +1,12 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/distributed/distributed.h"
|
||||
|
||||
namespace mlx::core::distributed::nccl {
|
||||
|
||||
using GroupImpl = mlx::core::distributed::detail::GroupImpl;
|
||||
|
||||
bool is_available();
|
||||
std::shared_ptr<GroupImpl> init(bool strict = false);
|
||||
|
||||
} // namespace mlx::core::distributed::nccl
|
20
mlx/distributed/nccl/no_nccl.cpp
Normal file
20
mlx/distributed/nccl/no_nccl.cpp
Normal file
@ -0,0 +1,20 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/distributed/nccl/nccl.h"
|
||||
|
||||
namespace mlx::core::distributed::nccl {
|
||||
|
||||
using GroupImpl = mlx::core::distributed::detail::GroupImpl;
|
||||
|
||||
bool is_available() {
|
||||
return false;
|
||||
}
|
||||
|
||||
std::shared_ptr<GroupImpl> init(bool strict /* = false */) {
|
||||
if (strict) {
|
||||
throw std::runtime_error("Cannot initialize nccl distributed backend.");
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
} // namespace mlx::core::distributed::nccl
|
@ -2,6 +2,9 @@
|
||||
|
||||
#include <sstream>
|
||||
|
||||
#include "mlx/backend/cuda/cuda.h"
|
||||
#include "mlx/backend/metal/metal.h"
|
||||
#include "mlx/distributed/distributed_impl.h"
|
||||
#include "mlx/distributed/ops.h"
|
||||
#include "mlx/distributed/primitives.h"
|
||||
|
||||
@ -28,11 +31,12 @@ array all_sum(
|
||||
if (group.size() == 1) {
|
||||
return x;
|
||||
}
|
||||
auto stream = detail::communication_stream(group, s);
|
||||
|
||||
return array(
|
||||
x.shape(),
|
||||
x.dtype(),
|
||||
std::make_shared<AllReduce>(
|
||||
to_stream(s, Device::cpu), group, AllReduce::Sum),
|
||||
std::make_shared<AllReduce>(stream, group, AllReduce::Sum),
|
||||
{x});
|
||||
}
|
||||
|
||||
@ -45,11 +49,12 @@ array all_max(
|
||||
if (group.size() == 1) {
|
||||
return x;
|
||||
}
|
||||
auto stream = detail::communication_stream(group, s);
|
||||
|
||||
return array(
|
||||
x.shape(),
|
||||
x.dtype(),
|
||||
std::make_shared<AllReduce>(
|
||||
to_stream(s, Device::cpu), group, AllReduce::Max),
|
||||
std::make_shared<AllReduce>(stream, group, AllReduce::Max),
|
||||
{x});
|
||||
}
|
||||
|
||||
@ -62,11 +67,12 @@ array all_min(
|
||||
if (group.size() == 1) {
|
||||
return x;
|
||||
}
|
||||
auto stream = detail::communication_stream(group, s);
|
||||
|
||||
return array(
|
||||
x.shape(),
|
||||
x.dtype(),
|
||||
std::make_shared<AllReduce>(
|
||||
to_stream(s, Device::cpu), group, AllReduce::Min),
|
||||
std::make_shared<AllReduce>(stream, group, AllReduce::Min),
|
||||
{x});
|
||||
}
|
||||
|
||||
@ -79,6 +85,7 @@ array all_gather(
|
||||
if (group.size() == 1) {
|
||||
return x;
|
||||
}
|
||||
auto stream = detail::communication_stream(group, s);
|
||||
|
||||
auto result_shape = x.shape();
|
||||
if (result_shape.size() == 0) {
|
||||
@ -89,7 +96,7 @@ array all_gather(
|
||||
return array(
|
||||
std::move(result_shape),
|
||||
x.dtype(),
|
||||
std::make_shared<AllGather>(to_stream(s, Device::cpu), group),
|
||||
std::make_shared<AllGather>(stream, group),
|
||||
{x});
|
||||
}
|
||||
|
||||
@ -103,6 +110,7 @@ array send(
|
||||
if (group.size() == 1) {
|
||||
throw std::invalid_argument("Cannot send to a singleton group");
|
||||
}
|
||||
auto stream = detail::communication_stream(group, s);
|
||||
|
||||
if (dst < 0 || dst >= group.size()) {
|
||||
std::ostringstream msg;
|
||||
@ -112,10 +120,7 @@ array send(
|
||||
}
|
||||
|
||||
return array(
|
||||
x.shape(),
|
||||
x.dtype(),
|
||||
std::make_shared<Send>(to_stream(s, Device::cpu), group, dst),
|
||||
{x});
|
||||
x.shape(), x.dtype(), std::make_shared<Send>(stream, group, dst), {x});
|
||||
}
|
||||
|
||||
array recv(
|
||||
@ -129,6 +134,7 @@ array recv(
|
||||
if (group.size() == 1) {
|
||||
throw std::invalid_argument("Cannot recv from a singleton group");
|
||||
}
|
||||
auto stream = detail::communication_stream(group, s);
|
||||
|
||||
if (src < 0 || src >= group.size()) {
|
||||
std::ostringstream msg;
|
||||
@ -139,7 +145,7 @@ array recv(
|
||||
return array(
|
||||
std::move(shape),
|
||||
std::move(dtype),
|
||||
std::make_shared<Recv>(to_stream(s, Device::cpu), group, src),
|
||||
std::make_shared<Recv>(stream, group, src),
|
||||
std::vector<array>{});
|
||||
}
|
||||
|
||||
|
@ -619,6 +619,10 @@ class RingGroup : public GroupImpl {
|
||||
}
|
||||
}
|
||||
|
||||
Stream communication_stream(StreamOrDevice s) override {
|
||||
return to_stream(s, Device::cpu);
|
||||
}
|
||||
|
||||
int rank() override {
|
||||
return rank_;
|
||||
}
|
||||
|
@ -415,6 +415,48 @@ def launch_mpi(parser, hosts, args, command):
|
||||
pass
|
||||
|
||||
|
||||
def launch_nccl(parser, hosts, args, command):
|
||||
master_host = hosts[0].ips[0]
|
||||
|
||||
if master_host != "127.0.0.1":
|
||||
raise ValueError("The NCCL backend only supports localhost for now. ")
|
||||
master_port = args.nccl_port
|
||||
world_size = len(hosts)
|
||||
|
||||
base_env = os.environ.copy()
|
||||
base_env.update(
|
||||
{
|
||||
"NCCL_DEBUG": "INFO",
|
||||
"NCCL_SOCKET_IFNAME": "lo", # Use loopback for local communication
|
||||
"NCCL_HOST_IP": master_host,
|
||||
"NCCL_PORT": str(master_port),
|
||||
"MLX_WORLD_SIZE": str(world_size),
|
||||
}
|
||||
)
|
||||
procs = []
|
||||
try:
|
||||
for rank in range(world_size):
|
||||
env = base_env.copy()
|
||||
env["MLX_RANK"] = str(rank)
|
||||
env["CUDA_VISIBLE_DEVICES"] = str(rank % args.nproc_per_node)
|
||||
p = Popen(command, env=env)
|
||||
procs.append(p)
|
||||
|
||||
for p in procs:
|
||||
ret = p.wait()
|
||||
if ret != 0:
|
||||
raise RuntimeError(f"Rank process exited with {ret}")
|
||||
|
||||
except (RuntimeError, KeyboardInterrupt) as err:
|
||||
for p in procs:
|
||||
if p.poll() is None:
|
||||
try:
|
||||
p.kill()
|
||||
except Exception:
|
||||
pass
|
||||
raise
|
||||
|
||||
|
||||
def check_ssh_connections(hosts):
|
||||
results = [False] * len(hosts)
|
||||
|
||||
@ -665,7 +707,7 @@ def distributed_config():
|
||||
)
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
choices=["ring", "mpi"],
|
||||
choices=["ring", "mpi", "nccl"],
|
||||
default="ring",
|
||||
help="Which distributed backend to configure",
|
||||
)
|
||||
@ -737,7 +779,7 @@ def main():
|
||||
parser.add_argument("--hostfile", help="The file containing the hosts")
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
choices=["ring", "mpi"],
|
||||
choices=["ring", "mpi", "nccl"],
|
||||
default="ring",
|
||||
help="Which distributed backend to launch",
|
||||
)
|
||||
@ -769,6 +811,13 @@ def main():
|
||||
parser.add_argument(
|
||||
"--cwd", help="Set the working directory on each node to the provided one"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--nccl-port",
|
||||
type=int,
|
||||
default=12345,
|
||||
help="The port to use for the NCCL communication (only for nccl backend)",
|
||||
)
|
||||
|
||||
args, rest = parser.parse_known_args()
|
||||
if rest[0] == "--":
|
||||
rest.pop(0)
|
||||
@ -799,8 +848,10 @@ def main():
|
||||
# Launch
|
||||
if args.backend == "ring":
|
||||
launch_ring(parser, hosts, args, rest)
|
||||
elif args.backend == "mpi":
|
||||
if args.backend == "mpi":
|
||||
launch_mpi(parser, hosts, args, rest)
|
||||
if args.backend == "nccl":
|
||||
launch_nccl(parser, hosts, args, rest)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -76,6 +76,7 @@ def average_gradients(
|
||||
group: Optional[mx.distributed.Group] = None,
|
||||
all_reduce_size: int = 32 * 1024**2,
|
||||
communication_type: Optional[mx.Dtype] = None,
|
||||
stream: mx.Stream = mx.cpu,
|
||||
):
|
||||
"""Average the gradients across the distributed processes in the passed group.
|
||||
|
||||
@ -94,6 +95,7 @@ def average_gradients(
|
||||
communication_type (Optional[mlx.core.Dtype]): If provided cast to this
|
||||
type before performing the communication. Typically cast to a
|
||||
smaller float to reduce the communication size. Default: ``None``.
|
||||
stream (mlx.core.Stream): The stream to use for the reduction. Default: ``mlx.cpu``.
|
||||
"""
|
||||
group = group or mx.distributed.init()
|
||||
N = group.size()
|
||||
@ -104,7 +106,7 @@ def average_gradients(
|
||||
def _average(x):
|
||||
dt = x.dtype
|
||||
x = x.astype(communication_type) if communication_type is not None else x
|
||||
return mx.distributed.all_sum(x, stream=mx.cpu).astype(dt) / N
|
||||
return mx.distributed.all_sum(x, stream=stream).astype(dt) / N
|
||||
|
||||
if all_reduce_size <= 0:
|
||||
return tree_map(_average, gradients)
|
||||
|
@ -79,7 +79,7 @@ void init_distributed(nb::module_& parent_module) {
|
||||
in case ``mx.distributed.is_available()`` returns False otherwise
|
||||
it throws a runtime error. Default: ``False``
|
||||
backend (str, optional): Which distributed backend to initialize.
|
||||
Possible values ``mpi``, ``ring``, ``any``. If set to ``any`` all
|
||||
Possible values ``mpi``, ``ring``, ``nccl``, ``any``. If set to ``any`` all
|
||||
available backends are tried and the first one that succeeds
|
||||
becomes the global group which will be returned in subsequent
|
||||
calls. Default: ``any``
|
||||
|
284
python/tests/nccl_test_distributed.py
Normal file
284
python/tests/nccl_test_distributed.py
Normal file
@ -0,0 +1,284 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import mlx_tests
|
||||
from mlx.nn.layers.distributed import shard_inplace, shard_linear
|
||||
from mlx.nn.utils import average_gradients
|
||||
|
||||
|
||||
class TestNCCLDistributed(mlx_tests.MLXTestCase):
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
world = mx.distributed.init(strict=True, backend="nccl")
|
||||
rank = world.rank()
|
||||
mx.set_default_device(mx.Device(mx.gpu, rank % 8))
|
||||
|
||||
def test_all_reduce(self):
|
||||
world = mx.distributed.init()
|
||||
dtypes = [
|
||||
(mx.int8, 0),
|
||||
(mx.uint8, 0),
|
||||
(mx.int32, 0),
|
||||
(mx.uint32, 0),
|
||||
(mx.float32, 1e-6),
|
||||
(mx.float16, 5e-3),
|
||||
(mx.bfloat16, 1e-1),
|
||||
]
|
||||
sizes = [
|
||||
(7,),
|
||||
(10,),
|
||||
(1024,),
|
||||
(1024, 1024),
|
||||
]
|
||||
key = mx.random.key(0)
|
||||
|
||||
for dt, rtol in dtypes:
|
||||
for sh in sizes:
|
||||
x = (
|
||||
mx.random.uniform(shape=(world.size(),) + sh, key=key) * 10
|
||||
).astype(dt)
|
||||
|
||||
# All sum
|
||||
y = mx.distributed.all_sum(x[world.rank()])
|
||||
z = x.sum(0)
|
||||
maxrelerror = (y - z).abs()
|
||||
if rtol > 0:
|
||||
maxrelerror /= z.abs()
|
||||
maxrelerror = maxrelerror.max()
|
||||
self.assertLessEqual(maxrelerror, rtol)
|
||||
|
||||
def test_average_gradients(self):
|
||||
original_all_sum = mx.distributed.all_sum
|
||||
n_calls = 0
|
||||
xtype = None
|
||||
|
||||
def new_all_sum(x, **kwargs):
|
||||
nonlocal n_calls
|
||||
nonlocal xtype
|
||||
|
||||
n_calls += 1
|
||||
if xtype is not None:
|
||||
self.assertEqual(xtype, x.dtype)
|
||||
|
||||
return original_all_sum(x, **kwargs)
|
||||
|
||||
mx.distributed.all_sum = new_all_sum
|
||||
try:
|
||||
grads = [mx.ones(10) for i in range(10)]
|
||||
new_grads = average_gradients(grads, stream=mx.gpu)
|
||||
mx.eval(new_grads)
|
||||
self.assertEqual(len(new_grads), 10)
|
||||
self.assertTrue(all(mx.all(g == 1) for g in new_grads))
|
||||
self.assertEqual(n_calls, 1)
|
||||
|
||||
n_calls = 0
|
||||
new_grads = average_gradients(grads, all_reduce_size=4 * 50, stream=mx.gpu)
|
||||
mx.eval(new_grads)
|
||||
self.assertEqual(len(new_grads), 10)
|
||||
self.assertTrue(all(mx.all(g == 1) for g in new_grads))
|
||||
self.assertEqual(n_calls, 2)
|
||||
|
||||
n_calls = 0
|
||||
new_grads = average_gradients(grads, all_reduce_size=0, stream=mx.gpu)
|
||||
mx.eval(new_grads)
|
||||
self.assertEqual(len(new_grads), 10)
|
||||
self.assertTrue(all(mx.all(g == 1) for g in new_grads))
|
||||
self.assertEqual(n_calls, 10)
|
||||
|
||||
n_calls = 0
|
||||
xtype = mx.float16
|
||||
new_grads = average_gradients(
|
||||
grads,
|
||||
all_reduce_size=2 * 50,
|
||||
communication_type=mx.float16,
|
||||
stream=mx.gpu,
|
||||
)
|
||||
mx.eval(new_grads)
|
||||
self.assertEqual(len(new_grads), 10)
|
||||
self.assertTrue(all(g.dtype == mx.float32 for g in new_grads))
|
||||
self.assertTrue(all(mx.all(g == 1) for g in new_grads))
|
||||
self.assertEqual(n_calls, 2)
|
||||
|
||||
finally:
|
||||
mx.distributed.all_sum = original_all_sum
|
||||
|
||||
def test_donation(self):
|
||||
x = mx.random.normal((1024,))
|
||||
mx.eval(x)
|
||||
mx.synchronize()
|
||||
|
||||
mx.reset_peak_memory()
|
||||
scale = mx.array(2.0)
|
||||
y = mx.distributed.all_sum(x)
|
||||
mx.eval(y)
|
||||
mx.synchronize()
|
||||
all_sum_only = mx.get_peak_memory()
|
||||
y = mx.distributed.all_sum(x) * scale
|
||||
mx.eval(y)
|
||||
mx.synchronize()
|
||||
all_sum_with_binary = mx.get_peak_memory()
|
||||
|
||||
self.assertEqual(all_sum_only, all_sum_with_binary)
|
||||
|
||||
def test_shard_linear(self):
|
||||
# Seed the prng to have the same inputs and weights generated everywhere
|
||||
mx.random.seed(0xF0F0F0F0)
|
||||
|
||||
# Prepare inputs
|
||||
world = mx.distributed.init()
|
||||
part = (
|
||||
slice(None),
|
||||
slice(
|
||||
world.rank() * 1024 // world.size(),
|
||||
(world.rank() + 1) * 1024 // world.size(),
|
||||
),
|
||||
)
|
||||
x = mx.random.normal((4, 1024))
|
||||
|
||||
# Create and shard some linear layers
|
||||
lin = nn.Linear(1024, 1024, bias=True)
|
||||
slin1 = shard_linear(lin, "all-to-sharded")
|
||||
slin2 = shard_linear(lin, "sharded-to-all")
|
||||
y = lin(x)
|
||||
y1 = slin1(x)
|
||||
y2 = slin2(x[part])
|
||||
self.assertTrue(mx.allclose(y, y2, atol=1e-4, rtol=1e-4))
|
||||
self.assertTrue(mx.allclose(y[part], y1, atol=1e-4, rtol=1e-4))
|
||||
|
||||
# Check the backward works as expected
|
||||
def dummy_loss(model, x, y):
|
||||
return (model(x) * y).sum()
|
||||
|
||||
mod = nn.Sequential(
|
||||
nn.Linear(128, 128),
|
||||
nn.Linear(128, 128),
|
||||
nn.Linear(128, 128),
|
||||
nn.Linear(128, 128),
|
||||
)
|
||||
smod = nn.Sequential(
|
||||
shard_linear(mod.layers[0], "all-to-sharded"),
|
||||
shard_linear(mod.layers[1], "sharded-to-all"),
|
||||
shard_linear(mod.layers[2], "all-to-sharded"),
|
||||
shard_linear(mod.layers[3], "sharded-to-all"),
|
||||
)
|
||||
|
||||
grad1 = nn.value_and_grad(mod, dummy_loss)
|
||||
grad2 = nn.value_and_grad(smod, dummy_loss)
|
||||
|
||||
x = mx.random.normal((4, 128))
|
||||
y = mx.random.normal((4, 128))
|
||||
|
||||
l1, g1 = grad1(mod, x, y)
|
||||
l2, g2 = grad2(smod, x, y)
|
||||
mx.eval(l1, g1, l2, g2)
|
||||
|
||||
part = slice(
|
||||
world.rank() * 128 // world.size(), (world.rank() + 1) * 128 // world.size()
|
||||
)
|
||||
|
||||
self.assertTrue(mx.allclose(l1, l2))
|
||||
self.assertTrue(
|
||||
mx.allclose(
|
||||
g1["layers"][0]["weight"][part],
|
||||
g2["layers"][0]["weight"],
|
||||
atol=1e-6,
|
||||
rtol=1e-4,
|
||||
)
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(
|
||||
g1["layers"][2]["weight"][part],
|
||||
g2["layers"][2]["weight"],
|
||||
atol=1e-6,
|
||||
rtol=1e-4,
|
||||
)
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(
|
||||
g1["layers"][1]["weight"][:, part],
|
||||
g2["layers"][1]["weight"],
|
||||
atol=1e-6,
|
||||
rtol=1e-4,
|
||||
)
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(
|
||||
g1["layers"][3]["weight"][:, part],
|
||||
g2["layers"][3]["weight"],
|
||||
atol=1e-6,
|
||||
rtol=1e-4,
|
||||
)
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(
|
||||
g1["layers"][0]["bias"][part],
|
||||
g2["layers"][0]["bias"],
|
||||
atol=1e-6,
|
||||
rtol=1e-4,
|
||||
)
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(
|
||||
g1["layers"][2]["bias"][part],
|
||||
g2["layers"][2]["bias"],
|
||||
atol=1e-6,
|
||||
rtol=1e-4,
|
||||
)
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(
|
||||
g1["layers"][1]["bias"], g2["layers"][1]["bias"], atol=1e-6, rtol=1e-4
|
||||
)
|
||||
)
|
||||
self.assertTrue(
|
||||
mx.allclose(
|
||||
g1["layers"][3]["bias"], g2["layers"][3]["bias"], atol=1e-6, rtol=1e-4
|
||||
)
|
||||
)
|
||||
|
||||
def test_shard_predicate(self):
|
||||
mx.random.seed(0xF0F0F0F0)
|
||||
|
||||
class MyConv(nn.Module):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__()
|
||||
self.aggregate = kwargs.pop("aggregate", False)
|
||||
self.conv = nn.Conv2d(*args, **kwargs)
|
||||
|
||||
def __call__(self, x):
|
||||
x = self.conv(x)
|
||||
if self.aggregate:
|
||||
x = mx.distributed.all_sum(x)
|
||||
return x
|
||||
|
||||
def sharding(path, weight):
|
||||
parts = path.split(".")
|
||||
even = int(parts[1]) % 2 == 0
|
||||
if even:
|
||||
return 0
|
||||
else:
|
||||
return -1 if parts[-1] != "bias" else None
|
||||
|
||||
mod = nn.Sequential(
|
||||
MyConv(3, 128, kernel_size=3),
|
||||
MyConv(128, 128, kernel_size=3),
|
||||
MyConv(128, 128, kernel_size=3),
|
||||
MyConv(128, 3, kernel_size=3),
|
||||
)
|
||||
smod = nn.Sequential(
|
||||
MyConv(3, 128, kernel_size=3),
|
||||
MyConv(128, 128, kernel_size=3, aggregate=True),
|
||||
MyConv(128, 128, kernel_size=3),
|
||||
MyConv(128, 3, kernel_size=3, aggregate=True),
|
||||
)
|
||||
smod.update(mod.parameters())
|
||||
shard_inplace(smod, sharding)
|
||||
|
||||
x = mx.random.normal((4, 16, 16, 3))
|
||||
y1 = mod(x)
|
||||
y2 = smod(x)
|
||||
self.assertTrue(mx.allclose(y1, y2, atol=1e-6, rtol=1e-4))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mlx_tests.MLXTestRunner()
|
Loading…
Reference in New Issue
Block a user