mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-06 19:08:15 +08:00
Fix building with CUDA < 12.8 (#2782)
Some checks failed
Build and Test / check_lint (push) Has been cancelled
Build and Test / linux_build_and_test (ubuntu-22.04) (push) Has been cancelled
Build and Test / linux_build_and_test (ubuntu-22.04-arm) (push) Has been cancelled
Build and Test / mac_build_and_test (14.0) (push) Has been cancelled
Build and Test / mac_build_and_test (15.0) (push) Has been cancelled
Build and Test / cuda_build_and_test (cuda-12.6) (push) Has been cancelled
Build and Test / cuda_build_and_test (cuda-12.9) (push) Has been cancelled
Build and Test / build_documentation (push) Has been cancelled
Build and Test / Linux Fedora CPP Build (aarch64) (push) Has been cancelled
Build and Test / Linux Fedora CPP Build (x86_64) (push) Has been cancelled
Nightly Build / build_linux_release (3.10) (push) Has been cancelled
Nightly Build / build_linux_release (3.14) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.11, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.11, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.12, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.12, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.13, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.13, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.14, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.14, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_mac_release (3.10) (push) Has been cancelled
Nightly Build / build_mac_release (3.13) (push) Has been cancelled
Nightly Build / build_cuda_release (push) Has been cancelled
Some checks failed
Build and Test / check_lint (push) Has been cancelled
Build and Test / linux_build_and_test (ubuntu-22.04) (push) Has been cancelled
Build and Test / linux_build_and_test (ubuntu-22.04-arm) (push) Has been cancelled
Build and Test / mac_build_and_test (14.0) (push) Has been cancelled
Build and Test / mac_build_and_test (15.0) (push) Has been cancelled
Build and Test / cuda_build_and_test (cuda-12.6) (push) Has been cancelled
Build and Test / cuda_build_and_test (cuda-12.9) (push) Has been cancelled
Build and Test / build_documentation (push) Has been cancelled
Build and Test / Linux Fedora CPP Build (aarch64) (push) Has been cancelled
Build and Test / Linux Fedora CPP Build (x86_64) (push) Has been cancelled
Nightly Build / build_linux_release (3.10) (push) Has been cancelled
Nightly Build / build_linux_release (3.14) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.11, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.11, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.12, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.12, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.13, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.13, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.14, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.14, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_mac_release (3.10) (push) Has been cancelled
Nightly Build / build_mac_release (3.13) (push) Has been cancelled
Nightly Build / build_cuda_release (push) Has been cancelled
This commit is contained in:
1
.github/actions/setup-linux/action.yml
vendored
1
.github/actions/setup-linux/action.yml
vendored
@@ -56,7 +56,6 @@ runs:
|
||||
PACKAGES: |
|
||||
{
|
||||
"cuda-12.6": "libcudnn9-dev-cuda-12 cuda-toolkit-12-6",
|
||||
"cuda-12.8": "libcudnn9-dev-cuda-12 cuda-toolkit-12-8",
|
||||
"cuda-12.9": "libcudnn9-dev-cuda-12 cuda-toolkit-12-9",
|
||||
"cuda-13.0": "libcudnn9-dev-cuda-13 cuda-toolkit-13-0"
|
||||
}
|
||||
|
||||
2
.github/workflows/pull_request.yml
vendored
2
.github/workflows/pull_request.yml
vendored
@@ -52,7 +52,7 @@ jobs:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
toolkit: ['cuda-12.8', 'cuda-12.9']
|
||||
toolkit: ['cuda-12.6', 'cuda-12.9']
|
||||
runs-on: gpu-t4-4-core
|
||||
needs: check_lint
|
||||
steps:
|
||||
|
||||
@@ -142,6 +142,7 @@ FetchContent_Declare(
|
||||
URL "https://github.com/NVIDIA/cccl/releases/download/v2.8.1/cccl-v2.8.1.zip")
|
||||
FetchContent_MakeAvailable(cccl)
|
||||
target_include_directories(mlx BEFORE PRIVATE "${cccl_SOURCE_DIR}/include")
|
||||
set_target_properties(mlx PROPERTIES CCCL_DIR "${cccl_SOURCE_DIR}/include")
|
||||
|
||||
# Use fixed version of NVTX.
|
||||
FetchContent_Declare(
|
||||
|
||||
@@ -119,7 +119,8 @@ void copy_to_managed(CudaBuffer& buf) {
|
||||
buf.data = new_data;
|
||||
}
|
||||
|
||||
Buffer CudaAllocator::malloc_impl(size_t size, cudaStream_t stream) {
|
||||
Buffer
|
||||
CudaAllocator::malloc_async(size_t size, int device, cudaStream_t stream) {
|
||||
if (size == 0) {
|
||||
return Buffer{new CudaBuffer{nullptr, 0, -1}};
|
||||
}
|
||||
@@ -134,9 +135,8 @@ Buffer CudaAllocator::malloc_impl(size_t size, cudaStream_t stream) {
|
||||
size = page_size * ((size + page_size - 1) / page_size);
|
||||
}
|
||||
|
||||
int device = -1;
|
||||
if (size > small_block_size && stream != nullptr) {
|
||||
CHECK_CUDA_ERROR(cudaStreamGetDevice(stream, &device));
|
||||
if (size <= small_block_size || stream == nullptr) {
|
||||
device = -1;
|
||||
}
|
||||
|
||||
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
@@ -182,12 +182,8 @@ Buffer CudaAllocator::malloc_impl(size_t size, cudaStream_t stream) {
|
||||
return Buffer{buf};
|
||||
}
|
||||
|
||||
Buffer CudaAllocator::malloc_async(size_t size, cudaStream_t stream) {
|
||||
return malloc_impl(size, stream);
|
||||
}
|
||||
|
||||
Buffer CudaAllocator::malloc(size_t size) {
|
||||
return malloc_impl(size, nullptr);
|
||||
return malloc_async(size, -1, nullptr);
|
||||
}
|
||||
|
||||
void CudaAllocator::free(Buffer buffer) {
|
||||
@@ -277,8 +273,9 @@ CudaAllocator& allocator() {
|
||||
return *allocator_;
|
||||
}
|
||||
|
||||
Buffer malloc_async(size_t size, cudaStream_t stream) {
|
||||
auto buffer = allocator().malloc_async(size, stream);
|
||||
Buffer malloc_async(size_t size, CommandEncoder& encoder) {
|
||||
auto buffer = allocator().malloc_async(
|
||||
size, encoder.device().cuda_device(), encoder.stream());
|
||||
if (size && !buffer.ptr()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[malloc_async] Unable to allocate " << size << " bytes.";
|
||||
|
||||
@@ -13,6 +13,8 @@
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
class CommandEncoder;
|
||||
|
||||
using allocator::Buffer;
|
||||
|
||||
// Stores cuda-managed unified memory.
|
||||
@@ -48,7 +50,7 @@ class SmallSizePool {
|
||||
class CudaAllocator : public allocator::Allocator {
|
||||
public:
|
||||
Buffer malloc(size_t size) override;
|
||||
Buffer malloc_async(size_t size, cudaStream_t stream);
|
||||
Buffer malloc_async(size_t size, int device, cudaStream_t stream);
|
||||
void free(Buffer buffer) override;
|
||||
size_t size(Buffer buffer) const override;
|
||||
|
||||
@@ -62,7 +64,6 @@ class CudaAllocator : public allocator::Allocator {
|
||||
void clear_cache();
|
||||
|
||||
private:
|
||||
Buffer malloc_impl(size_t size, cudaStream_t stream);
|
||||
void cuda_free(CudaBuffer* buf);
|
||||
|
||||
CudaAllocator();
|
||||
@@ -80,6 +81,6 @@ class CudaAllocator : public allocator::Allocator {
|
||||
|
||||
CudaAllocator& allocator();
|
||||
|
||||
Buffer malloc_async(size_t size, cudaStream_t stream);
|
||||
Buffer malloc_async(size_t size, CommandEncoder& encoder);
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -42,7 +42,7 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
return;
|
||||
}
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
encoder.set_output_array(out);
|
||||
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
|
||||
@@ -143,7 +143,7 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
|
||||
// Prepare the shapes, strides and axis arguments.
|
||||
Shape shape = remove_index(in.shape(), axis_);
|
||||
|
||||
@@ -367,9 +367,8 @@ void binary_op_gpu(
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
set_binary_op_output_data(a, b, out, bopt, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
set_binary_op_output_data(
|
||||
a, b, out, bopt, [&](auto n) { return cu::malloc_async(n, encoder); });
|
||||
binary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||
}
|
||||
|
||||
|
||||
@@ -246,12 +246,10 @@ void binary_two_op_gpu_inplace(
|
||||
auto& out_b = outputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
set_binary_op_output_data(a, b, out_a, bopt, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
set_binary_op_output_data(a, b, out_b, bopt, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
set_binary_op_output_data(
|
||||
a, b, out_a, bopt, [&](auto n) { return cu::malloc_async(n, encoder); });
|
||||
set_binary_op_output_data(
|
||||
a, b, out_b, bopt, [&](auto n) { return cu::malloc_async(n, encoder); });
|
||||
|
||||
if (out_a.size() == 0) {
|
||||
return;
|
||||
|
||||
@@ -298,7 +298,7 @@ void Compiled::eval_gpu(
|
||||
// Put outputs.
|
||||
compiled_allocate_outputs(
|
||||
inputs, outputs, is_constant_, contiguous, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
return cu::malloc_async(n, encoder);
|
||||
});
|
||||
for (auto& x : outputs) {
|
||||
args.append(x);
|
||||
|
||||
@@ -277,7 +277,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
array in = inputs[0];
|
||||
array wt = inputs[1];
|
||||
array out = out_;
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
Dtype dtype = out.dtype();
|
||||
|
||||
// Search cache.
|
||||
|
||||
@@ -86,7 +86,7 @@ array unfold_inputs_nd(
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(cu::malloc_async(unfolded.nbytes(), encoder.stream()));
|
||||
unfolded.set_data(cu::malloc_async(unfolded.nbytes(), encoder));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
|
||||
@@ -89,7 +89,7 @@ array grouped_unfold_transpose_inputs_nd(
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K * params.groups}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(cu::malloc_async(unfolded.nbytes(), encoder.stream()));
|
||||
unfolded.set_data(cu::malloc_async(unfolded.nbytes(), encoder));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
|
||||
@@ -7,9 +7,8 @@ namespace mlx::core {
|
||||
|
||||
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
bool donated = set_copy_output_data(in, out, ctype, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
bool donated = set_copy_output_data(
|
||||
in, out, ctype, [&](auto n) { return cu::malloc_async(n, encoder); });
|
||||
if (donated && in.dtype() == out.dtype()) {
|
||||
// If the output has the same type as the input then there is nothing to
|
||||
// copy, just use the buffer.
|
||||
@@ -104,7 +103,7 @@ void fill_gpu(const array& in, array& out, const Stream& s) {
|
||||
return;
|
||||
}
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
copy_contiguous(encoder, CopyType::Scalar, in, out, 0, 0);
|
||||
@@ -114,7 +113,7 @@ void reshape_gpu(const array& in, array& out, Stream s) {
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
if (copy_necessary) {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
copy_gpu_inplace(
|
||||
in,
|
||||
out,
|
||||
|
||||
@@ -135,9 +135,7 @@ bool prepare_cudnn_plan(
|
||||
void* workspace_ptr = nullptr;
|
||||
if (workspace_size > 0) {
|
||||
array workspace(
|
||||
cu::malloc_async(workspace_size, encoder.stream()),
|
||||
{workspace_size},
|
||||
uint8);
|
||||
cu::malloc_async(workspace_size, encoder), {workspace_size}, uint8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = gpu_ptr<void>(workspace);
|
||||
}
|
||||
|
||||
@@ -289,7 +289,7 @@ void CustomKernel::eval_gpu(
|
||||
copies.emplace_back(init_value_.value(), out.dtype());
|
||||
fill_gpu(copies.back(), out, s);
|
||||
} else {
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -26,7 +26,7 @@ void AllReduce::eval_gpu(
|
||||
out.copy_shared_buffer(in);
|
||||
return {in, out};
|
||||
} else {
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
return {in, out};
|
||||
}
|
||||
};
|
||||
@@ -74,7 +74,7 @@ void AllGather::eval_gpu(
|
||||
};
|
||||
|
||||
auto input = ensure_contiguous(inputs[0]);
|
||||
outputs[0].set_data(cu::malloc_async(outputs[0].nbytes(), encoder.stream()));
|
||||
outputs[0].set_data(cu::malloc_async(outputs[0].nbytes(), encoder));
|
||||
|
||||
encoder.set_input_array(input);
|
||||
encoder.set_output_array(outputs[0]);
|
||||
@@ -103,7 +103,7 @@ void ReduceScatter::eval_gpu(
|
||||
};
|
||||
|
||||
auto input = ensure_contiguous(inputs[0]);
|
||||
outputs[0].set_data(cu::malloc_async(outputs[0].nbytes(), encoder.stream()));
|
||||
outputs[0].set_data(cu::malloc_async(outputs[0].nbytes(), encoder));
|
||||
|
||||
encoder.set_input_array(input);
|
||||
encoder.set_output_array(outputs[0]);
|
||||
|
||||
@@ -370,7 +370,7 @@ void CublasGemm::execute(
|
||||
// Ensure workspace is 256-byte aligned
|
||||
int nbytes = cuda::ceil_div(heuristic_.workspaceSize, 256) * 256;
|
||||
array workspace(
|
||||
cu::malloc_async(nbytes, encoder.stream()),
|
||||
cu::malloc_async(nbytes, encoder),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
|
||||
@@ -163,7 +163,7 @@ void CublasGemm::run_batched(
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
cu::malloc_async(batch_count * sizeof(void*) * 3, encoder.stream()),
|
||||
cu::malloc_async(batch_count * sizeof(void*) * 3, encoder),
|
||||
{batch_count * 3},
|
||||
uint64);
|
||||
|
||||
@@ -251,7 +251,7 @@ void CublasGemm::run_batched(
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
cu::malloc_async(batch_count * sizeof(uint64_t) * 4, encoder.stream()),
|
||||
cu::malloc_async(batch_count * sizeof(uint64_t) * 4, encoder),
|
||||
{batch_count * 4},
|
||||
uint64);
|
||||
|
||||
|
||||
@@ -61,7 +61,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -241,7 +241,7 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -244,7 +244,7 @@ void LayerNorm::eval_gpu(
|
||||
out.copy_shared_buffer(x);
|
||||
} else {
|
||||
out.set_data(
|
||||
cu::malloc_async(x.data_size() * x.itemsize(), encoder.stream()),
|
||||
cu::malloc_async(x.data_size() * x.itemsize(), encoder),
|
||||
x.data_size(),
|
||||
x.strides(),
|
||||
x.flags());
|
||||
@@ -335,7 +335,7 @@ void LayerNormVJP::eval_gpu(
|
||||
gx.copy_shared_buffer(g);
|
||||
g_in_gx = true;
|
||||
} else {
|
||||
gx.set_data(cu::malloc_async(gx.nbytes(), encoder.stream()));
|
||||
gx.set_data(cu::malloc_async(gx.nbytes(), encoder));
|
||||
}
|
||||
if (g_copied && !g_in_gx) {
|
||||
encoder.add_temporary(g);
|
||||
@@ -355,7 +355,7 @@ void LayerNormVJP::eval_gpu(
|
||||
g_in_gw = true;
|
||||
gw_temp.copy_shared_buffer(g);
|
||||
} else {
|
||||
gw_temp.set_data(cu::malloc_async(gw_temp.nbytes(), encoder.stream()));
|
||||
gw_temp.set_data(cu::malloc_async(gw_temp.nbytes(), encoder));
|
||||
encoder.add_temporary(gw_temp);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -32,7 +32,7 @@ void Load::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
auto size = out.size();
|
||||
auto nbytes = size * out.itemsize();
|
||||
out.set_data(cu::malloc_async(nbytes, encoder.stream()));
|
||||
out.set_data(cu::malloc_async(nbytes, encoder));
|
||||
auto out_ptr = malloc(nbytes);
|
||||
reader_->read(static_cast<char*>(out_ptr), nbytes, offset_);
|
||||
if (swap_endianness_) {
|
||||
|
||||
@@ -115,7 +115,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
auto in = ensure_contiguous(inputs[0]);
|
||||
if (in.flags().row_contiguous) {
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
} else {
|
||||
auto n = in.shape(-1);
|
||||
auto flags = in.flags();
|
||||
@@ -130,7 +130,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
flags.col_contiguous = col_contig;
|
||||
out.set_data(
|
||||
cu::malloc_async(in.nbytes() / n, encoder.stream()),
|
||||
cu::malloc_async(in.nbytes() / n, encoder),
|
||||
in.data_size() / n,
|
||||
std::move(strides),
|
||||
flags);
|
||||
|
||||
@@ -121,7 +121,7 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
return;
|
||||
}
|
||||
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
|
||||
int M = a_pre.shape(-2);
|
||||
int N = b_pre.shape(-1);
|
||||
@@ -163,7 +163,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
if (beta_ == 1 && a.dtype() != complex64 && c.strides(-1) == 1 &&
|
||||
c.data_size() == out.shape(-1)) {
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
gemm_and_bias(
|
||||
encoder,
|
||||
M,
|
||||
@@ -187,10 +187,10 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto sty = c.strides()[c.ndim() - 1];
|
||||
if (sty == 1 && stx == c.shape(-1)) {
|
||||
ldc = stx;
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
} else if (sty == 1 && stx == 0) {
|
||||
ldc = 0;
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
} else {
|
||||
// Copy C into out and set C to out
|
||||
ldc = c.shape(-1);
|
||||
|
||||
@@ -59,7 +59,7 @@ void fast::Quantize::eval_gpu(
|
||||
auto scales = ensure_row_contiguous(inputs[1], enc, s);
|
||||
auto& w = outputs[0];
|
||||
|
||||
w.set_data(cu::malloc_async(w.nbytes(), enc.stream()));
|
||||
w.set_data(cu::malloc_async(w.nbytes(), enc));
|
||||
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
||||
@@ -72,11 +72,11 @@ void fast::Quantize::eval_gpu(
|
||||
auto& wq = outputs[0];
|
||||
auto& scales = outputs[1];
|
||||
|
||||
wq.set_data(cu::malloc_async(wq.nbytes(), enc.stream()));
|
||||
scales.set_data(cu::malloc_async(scales.nbytes(), enc.stream()));
|
||||
wq.set_data(cu::malloc_async(wq.nbytes(), enc));
|
||||
scales.set_data(cu::malloc_async(scales.nbytes(), enc));
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto& biases = outputs[2];
|
||||
biases.set_data(cu::malloc_async(biases.nbytes(), enc.stream()));
|
||||
biases.set_data(cu::malloc_async(biases.nbytes(), enc));
|
||||
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
|
||||
} else {
|
||||
fp_quantize(w, wq, scales, group_size_, bits_, enc, s);
|
||||
|
||||
@@ -145,7 +145,7 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
uint32_t bytes_per_key = out.itemsize() * elems_per_key;
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -66,7 +66,7 @@ void all_reduce(
|
||||
Reduce::ReduceType reduce_type) {
|
||||
constexpr int N_READS = 8;
|
||||
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
|
||||
auto get_args = [](size_t size, int N) {
|
||||
int threads = std::min(512UL, (size + N - 1) / N);
|
||||
@@ -107,8 +107,7 @@ void all_reduce(
|
||||
encoder.set_input_array(in);
|
||||
if (blocks > 1) {
|
||||
array intermediate({blocks}, out.dtype(), nullptr, {});
|
||||
intermediate.set_data(
|
||||
cu::malloc_async(intermediate.nbytes(), encoder.stream()));
|
||||
intermediate.set_data(cu::malloc_async(intermediate.nbytes(), encoder));
|
||||
encoder.add_temporary(intermediate);
|
||||
encoder.set_output_array(intermediate);
|
||||
dispatch_all_types(dt, [&](auto type_tag) {
|
||||
|
||||
@@ -28,7 +28,7 @@ void init_reduce(
|
||||
Reduce::ReduceType reduce_type) {
|
||||
// Allocate if needed
|
||||
if (out.data_shared_ptr() == nullptr) {
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
}
|
||||
|
||||
encoder.set_output_array(out);
|
||||
|
||||
@@ -96,7 +96,7 @@ inline void allocate_same_layout(
|
||||
const std::vector<int>& axes,
|
||||
cu::CommandEncoder& encoder) {
|
||||
if (in.flags().row_contiguous) {
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -135,7 +135,7 @@ inline void allocate_same_layout(
|
||||
fl.col_contiguous = cc;
|
||||
fl.contiguous = true;
|
||||
out.set_data(
|
||||
cu::malloc_async(out.nbytes(), encoder.stream()),
|
||||
cu::malloc_async(out.nbytes(), encoder),
|
||||
data_size,
|
||||
final_strides,
|
||||
fl,
|
||||
|
||||
@@ -190,7 +190,7 @@ void RMSNorm::eval_gpu(
|
||||
out.copy_shared_buffer(x);
|
||||
} else {
|
||||
out.set_data(
|
||||
cu::malloc_async(x.data_size() * x.itemsize(), encoder.stream()),
|
||||
cu::malloc_async(x.data_size() * x.itemsize(), encoder),
|
||||
x.data_size(),
|
||||
x.strides(),
|
||||
x.flags());
|
||||
@@ -274,7 +274,7 @@ void RMSNormVJP::eval_gpu(
|
||||
gx.copy_shared_buffer(g);
|
||||
g_in_gx = true;
|
||||
} else {
|
||||
gx.set_data(cu::malloc_async(gx.nbytes(), encoder.stream()));
|
||||
gx.set_data(cu::malloc_async(gx.nbytes(), encoder));
|
||||
}
|
||||
if (g_copied && !g_in_gx) {
|
||||
encoder.add_temporary(g);
|
||||
@@ -292,7 +292,7 @@ void RMSNormVJP::eval_gpu(
|
||||
if (!g_in_gx && donate_g) {
|
||||
gw_temp.copy_shared_buffer(g);
|
||||
} else {
|
||||
gw_temp.set_data(cu::malloc_async(gw_temp.nbytes(), encoder.stream()));
|
||||
gw_temp.set_data(cu::malloc_async(gw_temp.nbytes(), encoder));
|
||||
encoder.add_temporary(gw_temp);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -292,14 +292,14 @@ void RoPE::eval_gpu(
|
||||
donated = true;
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
}
|
||||
strides[0] = mat_size;
|
||||
strides[1] = in.strides()[ndim - 2];
|
||||
strides[2] = in.strides()[ndim - 1];
|
||||
} else if (dispatch_ndim == 3) {
|
||||
// Handle non-contiguous 3D inputs
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
strides[0] = in.strides()[ndim - 3];
|
||||
strides[1] = in.strides()[ndim - 2];
|
||||
strides[2] = in.strides()[ndim - 1];
|
||||
|
||||
@@ -196,7 +196,7 @@ void sdpa_cudnn(
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
// TODO: Handle donation.
|
||||
// TODO: Make O use same memory layout with Q.
|
||||
o.set_data(cu::malloc_async(o.nbytes(), encoder.stream()));
|
||||
o.set_data(cu::malloc_async(o.nbytes(), encoder));
|
||||
|
||||
encoder.set_input_array(q);
|
||||
encoder.set_input_array(k);
|
||||
@@ -240,7 +240,7 @@ void sdpa_cudnn(
|
||||
void* workspace_ptr = nullptr;
|
||||
if (workspace_size > 0) {
|
||||
array workspace(
|
||||
cu::malloc_async(workspace_size, encoder.stream()),
|
||||
cu::malloc_async(workspace_size, encoder),
|
||||
{static_cast<int>(workspace_size)},
|
||||
uint8);
|
||||
encoder.add_temporary(workspace);
|
||||
|
||||
@@ -561,10 +561,9 @@ void sdpa_vector_2pass_fallback(
|
||||
array sums(intermediate_shape, float32, nullptr, {});
|
||||
array maxs(std::move(intermediate_shape), float32, nullptr, {});
|
||||
|
||||
intermediate.set_data(
|
||||
cu::malloc_async(intermediate.nbytes(), encoder.stream()));
|
||||
sums.set_data(cu::malloc_async(sums.nbytes(), encoder.stream()));
|
||||
maxs.set_data(cu::malloc_async(maxs.nbytes(), encoder.stream()));
|
||||
intermediate.set_data(cu::malloc_async(intermediate.nbytes(), encoder));
|
||||
sums.set_data(cu::malloc_async(sums.nbytes(), encoder));
|
||||
maxs.set_data(cu::malloc_async(maxs.nbytes(), encoder));
|
||||
|
||||
encoder.add_temporary(intermediate);
|
||||
encoder.add_temporary(sums);
|
||||
@@ -769,7 +768,7 @@ void sdpa_vector(
|
||||
};
|
||||
|
||||
o.set_data(
|
||||
cu::malloc_async(o.nbytes(), encoder.stream()),
|
||||
cu::malloc_async(o.nbytes(), encoder),
|
||||
o.size(),
|
||||
{str_oB, str_oH, str_oL, str_oD},
|
||||
flags);
|
||||
|
||||
@@ -374,7 +374,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
out.set_data(
|
||||
cu::malloc_async(in.data_size() * out.itemsize(), encoder.stream()),
|
||||
cu::malloc_async(in.data_size() * out.itemsize(), encoder),
|
||||
in.data_size(),
|
||||
in.strides(),
|
||||
in.flags());
|
||||
|
||||
@@ -24,7 +24,7 @@ void concatenate_gpu(
|
||||
std::partial_sum(sizes.cbegin(), sizes.cend(), sizes.begin());
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder));
|
||||
|
||||
auto strides = out.strides();
|
||||
auto flags = out.flags();
|
||||
@@ -89,7 +89,7 @@ array compute_dynamic_offset(
|
||||
if (donate) {
|
||||
offset.copy_shared_buffer(indices);
|
||||
} else {
|
||||
offset.set_data(cu::malloc_async(offset.itemsize(), encoder.stream()));
|
||||
offset.set_data(cu::malloc_async(offset.itemsize(), encoder));
|
||||
}
|
||||
|
||||
encoder.add_temporary(offset);
|
||||
|
||||
@@ -118,7 +118,7 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
out.copy_shared_buffer(x);
|
||||
} else {
|
||||
out.set_data(
|
||||
cu::malloc_async(x.data_size() * x.itemsize(), encoder.stream()),
|
||||
cu::malloc_async(x.data_size() * x.itemsize(), encoder),
|
||||
x.data_size(),
|
||||
x.strides(),
|
||||
x.flags());
|
||||
|
||||
@@ -49,14 +49,12 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
array trans = swapaxes_in_eval(in, axis, last_dim);
|
||||
in = contiguous_copy_gpu(trans, s);
|
||||
encoder.add_temporary(in);
|
||||
out = array(
|
||||
cu::malloc_async(out.nbytes(), encoder.stream()),
|
||||
in.shape(),
|
||||
out.dtype());
|
||||
out =
|
||||
array(cu::malloc_async(out.nbytes(), encoder), in.shape(), out.dtype());
|
||||
encoder.add_temporary(out);
|
||||
} else {
|
||||
out.set_data(
|
||||
cu::malloc_async(in.data_size() * out.itemsize(), encoder.stream()),
|
||||
cu::malloc_async(in.data_size() * out.itemsize(), encoder),
|
||||
in.data_size(),
|
||||
in.strides(),
|
||||
in.flags());
|
||||
@@ -74,17 +72,13 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
if (argsort) {
|
||||
// Indices in the sorted dimension.
|
||||
array indices(
|
||||
cu::malloc_async(out.nbytes(), encoder.stream()),
|
||||
in.shape(),
|
||||
out.dtype());
|
||||
cu::malloc_async(out.nbytes(), encoder), in.shape(), out.dtype());
|
||||
encoder.add_temporary(indices);
|
||||
|
||||
// In argsort though we don't need the result of sorted values, the
|
||||
// API requires us to provide an array to store it.
|
||||
array discard(
|
||||
cu::malloc_async(in.nbytes(), encoder.stream()),
|
||||
in.shape(),
|
||||
in.dtype());
|
||||
cu::malloc_async(in.nbytes(), encoder), in.shape(), in.dtype());
|
||||
encoder.add_temporary(discard);
|
||||
|
||||
size_t size;
|
||||
@@ -104,9 +98,7 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
stream));
|
||||
|
||||
array temp(
|
||||
cu::malloc_async(size, encoder.stream()),
|
||||
{static_cast<int>(size)},
|
||||
uint8);
|
||||
cu::malloc_async(size, encoder), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
|
||||
// Start capturing after allocations
|
||||
@@ -148,9 +140,7 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
stream));
|
||||
|
||||
array temp(
|
||||
cu::malloc_async(size, encoder.stream()),
|
||||
{static_cast<int>(size)},
|
||||
uint8);
|
||||
cu::malloc_async(size, encoder), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
|
||||
// Start capturing after allocations
|
||||
|
||||
@@ -257,9 +257,8 @@ void ternary_op_gpu(
|
||||
auto& c = inputs[2];
|
||||
auto topt = get_ternary_op_type(a, b, c);
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
set_ternary_op_output_data(a, b, c, out, topt, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
set_ternary_op_output_data(
|
||||
a, b, c, out, topt, [&](auto n) { return cu::malloc_async(n, encoder); });
|
||||
ternary_op_gpu_inplace<Op>(inputs, out, s);
|
||||
}
|
||||
|
||||
|
||||
@@ -208,9 +208,8 @@ void unary_op_gpu(
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
set_unary_output_data(inputs[0], out, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
set_unary_output_data(
|
||||
inputs[0], out, [&](auto n) { return cu::malloc_async(n, encoder); });
|
||||
unary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||
}
|
||||
|
||||
|
||||
@@ -37,11 +37,11 @@ target_sources(
|
||||
${METAL_TEST_SOURCES})
|
||||
|
||||
if(MLX_BUILD_CUDA)
|
||||
# Find the CCCL headers in install dir.
|
||||
target_compile_definitions(
|
||||
mlx
|
||||
PRIVATE
|
||||
MLX_CCCL_DIR="${CMAKE_INSTALL_PREFIX}/${CMAKE_INSTALL_INCLUDEDIR}/cccl")
|
||||
# C++ tests are always built from source, so we have to specify where to find
|
||||
# CCCL headers for JIT as they are not installed in system.
|
||||
get_target_property(MLX_CCCL_DIR mlx CCCL_DIR)
|
||||
target_compile_definitions(mlx PRIVATE MLX_CCCL_DIR="${MLX_CCCL_DIR}")
|
||||
message(STATUS MLX_CCCL_DIR="${MLX_CCCL_DIR}")
|
||||
endif()
|
||||
|
||||
target_link_libraries(tests PRIVATE mlx doctest)
|
||||
|
||||
Reference in New Issue
Block a user