mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
mxfp4 works
This commit is contained in:
@@ -198,6 +198,12 @@ class TestBase(mlx_tests.MLXTestCase):
|
||||
self.assertTrue(isinstance(m.layers[1], nn.ReLU))
|
||||
self.assertTrue(isinstance(m.layers[2], nn.QuantizedLinear))
|
||||
|
||||
nn.quantize(m, group_size=32, mode="mxfp4")
|
||||
self.assertTrue(isinstance(m.layers[0], nn.QuantizedEmbedding))
|
||||
self.assertTrue(isinstance(m.layers[1], nn.ReLU))
|
||||
self.assertTrue(isinstance(m.layers[2], nn.QuantizedLinear))
|
||||
self.assertTrue(isinstance(m.layers[2].scales, mx.array))
|
||||
|
||||
def test_quantize_freeze(self):
|
||||
lin = nn.Linear(512, 512)
|
||||
qlin = lin.to_quantized()
|
||||
|
||||
@@ -218,6 +218,34 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
self.assertEqual(y_q.shape, y_hat.shape)
|
||||
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
|
||||
|
||||
def test_mxfp4_qmv(self):
|
||||
key = mx.random.key(0)
|
||||
k1, k2 = mx.random.split(key)
|
||||
tests = product(
|
||||
[256, 512, 67], # M
|
||||
[64, 128], # N
|
||||
[0, 1, 3, 8], # B
|
||||
)
|
||||
for M, N, B in tests:
|
||||
with self.subTest(shape=(B, M, N), group_size=32):
|
||||
x_shape = (3, 1, N) if B == 0 else (B, 1, N)
|
||||
w_shape = (M, N) if B == 0 else (B, M, N)
|
||||
x = mx.random.normal(shape=x_shape, key=k1)
|
||||
w = mx.random.normal(shape=w_shape, key=k2)
|
||||
w_q, scales = mx.quantize(w, group_size=32, mode="mxfp4")
|
||||
w_hat = mx.dequantize(w_q, scales, group_size=32, mode="mxfp4")
|
||||
y_q = mx.quantized_matmul(
|
||||
x,
|
||||
w_q,
|
||||
scales,
|
||||
transpose=True,
|
||||
group_size=32,
|
||||
mode="mxfp4",
|
||||
)
|
||||
y_hat = x @ mx.swapaxes(w_hat, -1, -2)
|
||||
self.assertEqual(y_q.shape, y_hat.shape)
|
||||
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
|
||||
|
||||
def test_qvm(self):
|
||||
key = mx.random.key(0)
|
||||
k1, k2 = mx.random.split(key)
|
||||
@@ -283,6 +311,38 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
self.assertEqual(y_q.shape, y_hat.shape)
|
||||
self.assertLess((y_q - y_hat).abs().max(), 2e-3)
|
||||
|
||||
def test_mxfp4_qvm(self):
|
||||
key = mx.random.key(0)
|
||||
k1, k2 = mx.random.split(key)
|
||||
tests = product(
|
||||
[32, 128, 256], # M
|
||||
[128, 256, 67], # N
|
||||
[0, 1, 3, 8], # B
|
||||
)
|
||||
# Add a splitk
|
||||
tests = list(tests)
|
||||
tests.append((128, 16384, 0))
|
||||
|
||||
for M, N, B in tests:
|
||||
with self.subTest(shape=(B, M, N)):
|
||||
x_shape = (1, N) if B == 0 else (B, 1, N)
|
||||
w_shape = (N, M) if B == 0 else (B, N, M)
|
||||
x = mx.random.normal(shape=x_shape, key=k1)
|
||||
w = mx.random.normal(shape=w_shape, key=k2)
|
||||
w_q, scales = mx.quantize(w, group_size=32, mode="mxfp4")
|
||||
w_hat = mx.dequantize(w_q, scales, group_size=32, mode="mxfp4")
|
||||
y_q = mx.quantized_matmul(
|
||||
x,
|
||||
w_q,
|
||||
scales,
|
||||
transpose=False,
|
||||
group_size=32,
|
||||
mode="mxfp4",
|
||||
)
|
||||
y_hat = x @ w_hat
|
||||
self.assertEqual(y_q.shape, y_hat.shape)
|
||||
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
|
||||
|
||||
def test_mode_error_cases(self):
|
||||
w = mx.random.normal(shape=(256, 256))
|
||||
x = mx.random.normal(shape=(1, 256))
|
||||
@@ -475,9 +535,13 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
self.assertLess((y_q - y_hat).abs().max(), 1e-3)
|
||||
|
||||
def test_gather_qmm(self):
|
||||
def quantize(w, transpose=True, group_size=64, bits=4):
|
||||
qw, s, b = mx.quantize(w, group_size=group_size, bits=bits)
|
||||
w_hat = mx.dequantize(qw, s, b, group_size=group_size, bits=bits)
|
||||
def quantize(w, transpose=True, group_size=64, bits=4, mode="affine"):
|
||||
if mode == "affine":
|
||||
qw, s, b = mx.quantize(w, group_size=group_size, bits=bits, mode=mode)
|
||||
else:
|
||||
qw, s = mx.quantize(w, group_size=group_size, bits=bits, mode=mode)
|
||||
b = None
|
||||
w_hat = mx.dequantize(qw, s, b, group_size=group_size, bits=bits, mode=mode)
|
||||
if transpose:
|
||||
w_hat = w_hat.swapaxes(-1, -2)
|
||||
return w_hat, qw, s, b
|
||||
@@ -494,6 +558,7 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
transpose=True,
|
||||
group_size=64,
|
||||
bits=4,
|
||||
mode="affine",
|
||||
):
|
||||
with self.subTest(
|
||||
M=M,
|
||||
@@ -507,12 +572,13 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
transpose=transpose,
|
||||
group_size=group_size,
|
||||
bits=bits,
|
||||
mode=mode,
|
||||
):
|
||||
x = mx.random.normal(shape=batch_A + (M, K)).astype(dtype)
|
||||
w = mx.random.normal(
|
||||
shape=batch_B + ((N, K) if transpose else (K, N))
|
||||
).astype(dtype)
|
||||
w_hat, qw, s, b = quantize(w, transpose, group_size, bits)
|
||||
w_hat, qw, s, b = quantize(w, transpose, group_size, bits, mode=mode)
|
||||
|
||||
if lhs_indices is not None:
|
||||
lhs_indices = mx.array(lhs_indices)
|
||||
@@ -530,8 +596,8 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
transpose=transpose,
|
||||
group_size=group_size,
|
||||
bits=bits,
|
||||
mode=mode,
|
||||
)
|
||||
|
||||
self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
|
||||
|
||||
inputs = (
|
||||
@@ -575,6 +641,14 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
"batch_B": (4, 1),
|
||||
"rhs_indices": ((2,), (0,), (1,)),
|
||||
},
|
||||
{
|
||||
"batch_A": (1,),
|
||||
"lhs_indices": (0,),
|
||||
"batch_B": (3,),
|
||||
"rhs_indices": (2, 1),
|
||||
"group_size": 32,
|
||||
"mode": "mxfp4",
|
||||
},
|
||||
)
|
||||
|
||||
for kwargs in inputs:
|
||||
@@ -618,9 +692,14 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
self.assertTrue(mx.allclose(g1, g2, atol=1e-4))
|
||||
|
||||
def test_gather_qmm_sorted(self):
|
||||
def quantize(w, transpose=True, group_size=64, bits=4):
|
||||
qw, s, b = mx.quantize(w, group_size=group_size, bits=bits)
|
||||
w_hat = mx.dequantize(qw, s, b, group_size=group_size, bits=bits)
|
||||
def quantize(w, transpose=True, bits=4, group_size=64, mode="affine"):
|
||||
if mode == "affine":
|
||||
qw, s, b = mx.quantize(w, group_size=group_size, bits=bits, mode=mode)
|
||||
else:
|
||||
qw, s = mx.quantize(w, group_size=group_size, bits=bits, mode=mode)
|
||||
b = None
|
||||
|
||||
w_hat = mx.dequantize(qw, s, b, group_size=group_size, bits=bits, mode=mode)
|
||||
if transpose:
|
||||
w_hat = w_hat.swapaxes(-1, -2)
|
||||
return w_hat, qw, s, b
|
||||
@@ -640,19 +719,21 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
|
||||
parameters = [
|
||||
# L, K, D, E, I, transpose
|
||||
(32, 512, 512, 4, 2, True),
|
||||
(32, 512, 544, 4, 2, True),
|
||||
(133, 512, 512, 4, 2, True),
|
||||
(133, 512, 555, 4, 2, True),
|
||||
(133, 512, 512, 4, 2, True),
|
||||
(64, 512, 512, 4, 2, False),
|
||||
(64, 512, 544, 4, 2, False),
|
||||
(133, 512, 512, 4, 2, False),
|
||||
(133, 512, 544, 4, 2, False),
|
||||
(133, 512, 555, 4, 2, False),
|
||||
(64, 512, 512, 4, 2, False),
|
||||
(32, 512, 512, 4, 2, True, "affine"),
|
||||
(32, 512, 544, 4, 2, True, "mxfp4"),
|
||||
(133, 512, 512, 4, 2, True, "affine"),
|
||||
(133, 512, 555, 4, 2, True, "affine"),
|
||||
(133, 512, 512, 4, 2, True, "affine"),
|
||||
(64, 512, 512, 4, 2, False, "affine"),
|
||||
(64, 512, 544, 4, 2, False, "mxfp4"),
|
||||
(133, 512, 512, 4, 2, False, "affine"),
|
||||
(133, 512, 544, 4, 2, False, "affine"),
|
||||
(133, 512, 555, 4, 2, False, "affine"),
|
||||
(64, 512, 512, 4, 2, False, "affine"),
|
||||
]
|
||||
for L, K, D, E, I, transpose in parameters:
|
||||
for L, K, D, E, I, transpose, mode in parameters:
|
||||
if mode == "mxfp4":
|
||||
group_size = 32
|
||||
K, D = (K, D) if transpose else (D, K)
|
||||
ishape = (L, I)
|
||||
xshape = (L, 1, 1, K)
|
||||
@@ -661,14 +742,28 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
indices = (mx.random.uniform(shape=ishape) * E).astype(mx.uint32)
|
||||
x = mx.random.normal(xshape) / K**0.5
|
||||
w = mx.random.normal(wshape) / K**0.5
|
||||
w, *wq = quantize(w, transpose=transpose)
|
||||
w, *wq = quantize(w, group_size=group_size, mode=mode, transpose=transpose)
|
||||
|
||||
y1 = mx.gather_mm(x, w, rhs_indices=indices)
|
||||
y2 = mx.gather_qmm(x, *wq, transpose=transpose, rhs_indices=indices)
|
||||
y2 = mx.gather_qmm(
|
||||
x,
|
||||
*wq,
|
||||
group_size=group_size,
|
||||
mode=mode,
|
||||
transpose=transpose,
|
||||
rhs_indices=indices
|
||||
)
|
||||
xs, idx, inv_order = gather_sort(x, indices)
|
||||
y3 = mx.gather_mm(xs, w, rhs_indices=idx, sorted_indices=True)
|
||||
|
||||
y4 = mx.gather_qmm(
|
||||
xs, *wq, rhs_indices=idx, transpose=transpose, sorted_indices=True
|
||||
xs,
|
||||
*wq,
|
||||
group_size=group_size,
|
||||
mode=mode,
|
||||
rhs_indices=idx,
|
||||
transpose=transpose,
|
||||
sorted_indices=True
|
||||
)
|
||||
y3 = scatter_unsort(y3, inv_order, indices.shape)
|
||||
y4 = scatter_unsort(y4, inv_order, indices.shape)
|
||||
|
||||
Reference in New Issue
Block a user