Switch to nanobind (#839)

* mostly builds

* most tests pass

* fix circle build

* add back buffer protocol

* includes

* fix for py38

* limit to cpu device

* include

* fix stubs

* move signatures for docs

* stubgen + docs fix

* doc for compiled function, comments
This commit is contained in:
Awni Hannun
2024-03-18 20:12:25 -07:00
committed by GitHub
parent d39ed54f8e
commit 9a8ee00246
34 changed files with 2343 additions and 2344 deletions

View File

@@ -1,20 +1,17 @@
// Copyright © 2023-2024 Apple Inc.
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <nanobind/nanobind.h>
#include <nanobind/stl/optional.h>
#include <nanobind/stl/variant.h>
#include "mlx/fast.h"
#include "mlx/ops.h"
#include "python/src/utils.h"
namespace py = pybind11;
using namespace py::literals;
namespace nb = nanobind;
using namespace nb::literals;
using namespace mlx::core;
void init_extensions(py::module_& parent_module) {
py::options options;
options.disable_function_signatures();
void init_fast(nb::module_& parent_module) {
auto m =
parent_module.def_submodule("fast", "mlx.core.fast: fast operations");
@@ -31,15 +28,15 @@ void init_extensions(py::module_& parent_module) {
},
"a"_a,
"dims"_a,
py::kw_only(),
nb::kw_only(),
"traditional"_a,
"base"_a,
"scale"_a,
"offset"_a,
"stream"_a = none,
"stream"_a = nb::none(),
nb::sig(
"def rope(a: array, dims: int, *, traditinoal: bool, base: float, scale: float, offset: int, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
rope(a: array, dims: int, *, traditinoal: bool, base: float, scale: float, offset: int, stream: Union[None, Stream, Device] = None) -> array
Apply rotary positional encoding to the input.
Args:
@@ -70,30 +67,34 @@ void init_extensions(py::module_& parent_module) {
"q"_a,
"k"_a,
"v"_a,
py::kw_only(),
nb::kw_only(),
"scale"_a,
"mask"_a = none,
"stream"_a = none,
"mask"_a = nb::none(),
"stream"_a = nb::none(),
nb::sig(
"def scaled_dot_product_attention(q: array, k: array, v: array, *, scale: float, mask: Union[None, array] = None, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
scaled_dot_product_attention(q: array, k: array, v: array, *, scale: float, mask: Union[None, array] = None, stream: Union[None, Stream, Device] = None) -> array
A fast implementation of multi-head attention: ``O = softmax(Q @ K.T, dim=-1) @ V``.
A fast implementation of multi-head attention: O = softmax(Q @ K.T, dim=-1) @ V.
Supports [Multi-Head Attention](https://arxiv.org/abs/1706.03762), [Grouped Query Attention](https://arxiv.org/abs/2305.13245), and [Multi-Query Attention](https://arxiv.org/abs/1911.02150).
Supports:
* [Multi-Head Attention](https://arxiv.org/abs/1706.03762)
* [Grouped Query Attention](https://arxiv.org/abs/2305.13245)
* [Multi-Query Attention](https://arxiv.org/abs/1911.02150).
This function will dispatch to an optimized Metal kernel when the query sequence length is 1. It handles other cases with regular MLX operations.
Note: The softmax operation is performed in ``float32`` regardless of
input precision.
Note: The softmax operation is performed in float32 precision regardless of input precision (float16 or float32).
Note: For Grouped Query Attention and Multi-Query Attention, the input arrays for `key` and `value` should not be pre-tiled to match the `query` array.
Note: For Grouped Query Attention and Multi-Query Attention, the ``k``
and ``v`` inputs should not be pre-tiled to match ``q``.
Args:
q (array): Input query array.
k (array): Input keys array.
v (array): Input values array.
scale (float): Scale for queries (typically ``1.0 / sqrt(q.shape(-1)``)
mask (array, optional): An additive mask to apply to the query-key scores.
Args:
q (array): Input query array.
k (array): Input keys array.
v (array): Input values array.
scale (float): Scale for queries (typically ``1.0 / sqrt(q.shape(-1)``)
mask (array, optional): An additive mask to apply to the query-key scores.
Returns:
array: The output array.
)pbdoc");
Returns:
array: The output array.
)pbdoc");
}