Switch to nanobind (#839)

* mostly builds

* most tests pass

* fix circle build

* add back buffer protocol

* includes

* fix for py38

* limit to cpu device

* include

* fix stubs

* move signatures for docs

* stubgen + docs fix

* doc for compiled function, comments
This commit is contained in:
Awni Hannun
2024-03-18 20:12:25 -07:00
committed by GitHub
parent d39ed54f8e
commit 9a8ee00246
34 changed files with 2343 additions and 2344 deletions

View File

@@ -1,6 +1,11 @@
// Copyright © 2023-2024 Apple Inc.
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <nanobind/nanobind.h>
#include <nanobind/stl/optional.h>
#include <nanobind/stl/pair.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/variant.h>
#include <nanobind/stl/vector.h>
#include <algorithm>
#include <fstream>
#include <numeric>
@@ -13,13 +18,17 @@
#include "mlx/transforms_impl.h"
#include "python/src/trees.h"
namespace py = pybind11;
using namespace py::literals;
namespace nb = nanobind;
using namespace nb::literals;
using namespace mlx::core;
using IntOrVec = std::variant<int, std::vector<int>>;
using StrOrVec = std::variant<std::string, std::vector<std::string>>;
inline std::string type_name_str(const nb::handle& o) {
return nb::cast<std::string>(nb::type_name(o.type()));
}
template <typename T>
std::vector<T> to_vector(const std::variant<T, std::vector<T>>& v) {
std::vector<T> vals;
@@ -49,7 +58,7 @@ auto validate_argnums_argnames(
}
auto py_value_and_grad(
const py::function& fun,
const nb::callable& fun,
std::vector<int> argnums,
std::vector<std::string> argnames,
const std::string& error_msg_tag,
@@ -71,7 +80,7 @@ auto py_value_and_grad(
}
return [fun, argnums, argnames, error_msg_tag, scalar_func_only](
const py::args& args, const py::kwargs& kwargs) {
const nb::args& args, const nb::kwargs& kwargs) {
// Sanitize the input
if (argnums.size() > 0 && argnums.back() >= args.size()) {
std::ostringstream msg;
@@ -89,7 +98,7 @@ auto py_value_and_grad(
<< "' because the function is called with the "
<< "following keyword arguments {";
for (auto item : kwargs) {
msg << item.first.cast<std::string>() << ",";
msg << nb::cast<std::string>(item.first) << ",";
}
msg << "}";
throw std::invalid_argument(msg.str());
@@ -115,7 +124,7 @@ auto py_value_and_grad(
// value_out will hold the output of the python function in order to be
// able to reconstruct the python tree of extra return values
py::object py_value_out;
nb::object py_value_out;
auto value_and_grads = value_and_grad(
[&fun,
&args,
@@ -127,15 +136,15 @@ auto py_value_and_grad(
&error_msg_tag,
scalar_func_only](const std::vector<array>& a) {
// Copy the arguments
py::args args_cpy = py::tuple(args.size());
py::kwargs kwargs_cpy = py::kwargs();
nb::list args_cpy;
nb::kwargs kwargs_cpy = nb::kwargs();
int j = 0;
for (int i = 0; i < args.size(); ++i) {
if (j < argnums.size() && i == argnums[j]) {
args_cpy[i] = tree_unflatten(args[i], a, counts[j]);
args_cpy.append(tree_unflatten(args[i], a, counts[j]));
j++;
} else {
args_cpy[i] = args[i];
args_cpy.append(args[i]);
}
}
for (auto& key : argnames) {
@@ -154,25 +163,25 @@ auto py_value_and_grad(
py_value_out = fun(*args_cpy, **kwargs_cpy);
// Validate the return value of the python function
if (!py::isinstance<array>(py_value_out)) {
if (!nb::isinstance<array>(py_value_out)) {
if (scalar_func_only) {
std::ostringstream msg;
msg << error_msg_tag << " The return value of the function "
<< "whose gradient we want to compute should be a "
<< "scalar array; but " << py_value_out.get_type()
<< "scalar array; but " << type_name_str(py_value_out)
<< " was returned.";
throw std::invalid_argument(msg.str());
}
if (!py::isinstance<py::tuple>(py_value_out)) {
if (!nb::isinstance<nb::tuple>(py_value_out)) {
std::ostringstream msg;
msg << error_msg_tag << " The return value of the function "
<< "whose gradient we want to compute should be either a "
<< "scalar array or a tuple with the first value being a "
<< "scalar array (Union[array, Tuple[array, Any, ...]]); but "
<< py_value_out.get_type() << " was returned.";
<< type_name_str(py_value_out) << " was returned.";
throw std::invalid_argument(msg.str());
}
py::tuple ret = py::cast<py::tuple>(py_value_out);
nb::tuple ret = nb::cast<nb::tuple>(py_value_out);
if (ret.size() == 0) {
std::ostringstream msg;
msg << error_msg_tag << " The return value of the function "
@@ -182,14 +191,14 @@ auto py_value_and_grad(
<< "we got an empty tuple.";
throw std::invalid_argument(msg.str());
}
if (!py::isinstance<array>(ret[0])) {
if (!nb::isinstance<array>(ret[0])) {
std::ostringstream msg;
msg << error_msg_tag << " The return value of the function "
<< "whose gradient we want to compute should be either a "
<< "scalar array or a tuple with the first value being a "
<< "scalar array (Union[array, Tuple[array, Any, ...]]); but it "
<< "was a tuple with the first value being of type "
<< ret[0].get_type() << " .";
<< type_name_str(ret[0]) << " .";
throw std::invalid_argument(msg.str());
}
}
@@ -212,61 +221,60 @@ auto py_value_and_grad(
// In case 2 we return a tuple of the above.
// In case 3 we return a tuple containing a tuple and dict (sth like
// (tuple(), dict(x=mx.array(5))) ).
py::object positional_grads;
py::object keyword_grads;
py::object py_grads;
nb::object positional_grads;
nb::object keyword_grads;
nb::object py_grads;
// Collect the gradients for the positional arguments
if (argnums.size() == 1) {
positional_grads = tree_unflatten(args[argnums[0]], gradients, counts[0]);
} else if (argnums.size() > 1) {
py::tuple grads_(argnums.size());
nb::list grads_;
for (int i = 0; i < argnums.size(); i++) {
grads_[i] = tree_unflatten(args[argnums[i]], gradients, counts[i]);
grads_.append(tree_unflatten(args[argnums[i]], gradients, counts[i]));
}
positional_grads = py::cast<py::object>(grads_);
positional_grads = nb::tuple(grads_);
} else {
positional_grads = py::none();
positional_grads = nb::none();
}
// No keyword argument gradients so return the tuple of gradients
if (argnames.size() == 0) {
py_grads = positional_grads;
} else {
py::dict grads_;
nb::dict grads_;
for (int i = 0; i < argnames.size(); i++) {
auto& k = argnames[i];
grads_[k.c_str()] = tree_unflatten(
kwargs[k.c_str()], gradients, counts[i + argnums.size()]);
}
keyword_grads = py::cast<py::object>(grads_);
keyword_grads = grads_;
py_grads =
py::cast<py::object>(py::make_tuple(positional_grads, keyword_grads));
py_grads = nb::make_tuple(positional_grads, keyword_grads);
}
// Put the values back in the container
py::object return_value = tree_unflatten(py_value_out, value);
nb::object return_value = tree_unflatten(py_value_out, value);
return std::make_pair(return_value, py_grads);
};
}
auto py_vmap(
const py::function& fun,
const py::object& in_axes,
const py::object& out_axes) {
return [fun, in_axes, out_axes](const py::args& args) {
auto axes_to_flat_tree = [](const py::object& tree,
const py::object& axes) {
const nb::callable& fun,
const nb::object& in_axes,
const nb::object& out_axes) {
return [fun, in_axes, out_axes](const nb::args& args) {
auto axes_to_flat_tree = [](const nb::object& tree,
const nb::object& axes) {
auto tree_axes = tree_map(
{tree, axes},
[](const std::vector<py::object>& inputs) { return inputs[1]; });
[](const std::vector<nb::object>& inputs) { return inputs[1]; });
std::vector<int> flat_axes;
tree_visit(tree_axes, [&flat_axes](py::handle obj) {
tree_visit(tree_axes, [&flat_axes](nb::handle obj) {
if (obj.is_none()) {
flat_axes.push_back(-1);
} else if (py::isinstance<py::int_>(obj)) {
flat_axes.push_back(py::cast<int>(py::cast<py::int_>(obj)));
} else if (nb::isinstance<nb::int_>(obj)) {
flat_axes.push_back(nb::cast<int>(nb::cast<nb::int_>(obj)));
} else {
throw std::invalid_argument("[vmap] axis must be int or None.");
}
@@ -280,7 +288,7 @@ auto py_vmap(
// py_value_out will hold the output of the python function in order to be
// able to reconstruct the python tree of extra return values
py::object py_outputs;
nb::object py_outputs;
auto vmap_fn =
[&fun, &args, &inputs, &py_outputs](const std::vector<array>& a) {
@@ -305,24 +313,24 @@ auto py_vmap(
};
}
std::unordered_map<size_t, py::object>& tree_cache() {
std::unordered_map<size_t, nb::object>& tree_cache() {
// This map is used to Cache the tree structure of the outputs
static std::unordered_map<size_t, py::object> tree_cache_;
static std::unordered_map<size_t, nb::object> tree_cache_;
return tree_cache_;
}
struct PyCompiledFun {
py::function fun;
nb::callable fun;
size_t fun_id;
py::object captured_inputs;
py::object captured_outputs;
nb::object captured_inputs;
nb::object captured_outputs;
bool shapeless;
size_t num_outputs{0};
mutable size_t num_outputs{0};
PyCompiledFun(
const py::function& fun,
py::object inputs,
py::object outputs,
const nb::callable& fun,
nb::object inputs,
nb::object outputs,
bool shapeless)
: fun(fun),
fun_id(reinterpret_cast<size_t>(fun.ptr())),
@@ -342,7 +350,7 @@ struct PyCompiledFun {
num_outputs = other.num_outputs;
};
py::object operator()(const py::args& args, const py::kwargs& kwargs) {
nb::object call_impl(const nb::args& args, const nb::kwargs& kwargs) {
// Flat array inputs
std::vector<array> inputs;
@@ -358,45 +366,45 @@ struct PyCompiledFun {
constexpr uint64_t dict_identifier = 18446744073709551521UL;
// Flatten the tree with hashed constants and structure
std::function<void(py::handle)> recurse;
recurse = [&](py::handle obj) {
if (py::isinstance<py::list>(obj)) {
auto l = py::cast<py::list>(obj);
std::function<void(nb::handle)> recurse;
recurse = [&](nb::handle obj) {
if (nb::isinstance<nb::list>(obj)) {
auto l = nb::cast<nb::list>(obj);
constants.push_back(list_identifier);
for (int i = 0; i < l.size(); ++i) {
recurse(l[i]);
}
} else if (py::isinstance<py::tuple>(obj)) {
auto l = py::cast<py::tuple>(obj);
} else if (nb::isinstance<nb::tuple>(obj)) {
auto l = nb::cast<nb::tuple>(obj);
constants.push_back(list_identifier);
for (auto item : obj) {
recurse(item);
}
} else if (py::isinstance<py::dict>(obj)) {
auto d = py::cast<py::dict>(obj);
} else if (nb::isinstance<nb::dict>(obj)) {
auto d = nb::cast<nb::dict>(obj);
constants.push_back(dict_identifier);
for (auto item : d) {
auto r = py::hash(item.first);
auto r = item.first.attr("__hash__");
constants.push_back(*reinterpret_cast<uint64_t*>(&r));
recurse(item.second);
}
} else if (py::isinstance<array>(obj)) {
inputs.push_back(py::cast<array>(obj));
} else if (nb::isinstance<array>(obj)) {
inputs.push_back(nb::cast<array>(obj));
constants.push_back(array_identifier);
} else if (py::isinstance<py::str>(obj)) {
auto r = py::hash(obj);
} else if (nb::isinstance<nb::str>(obj)) {
auto r = obj.attr("__hash__");
constants.push_back(*reinterpret_cast<uint64_t*>(&r));
} else if (py::isinstance<py::int_>(obj)) {
auto r = obj.cast<int64_t>();
} else if (nb::isinstance<nb::int_>(obj)) {
auto r = nb::cast<int64_t>(obj);
constants.push_back(*reinterpret_cast<uint64_t*>(&r));
} else if (py::isinstance<py::float_>(obj)) {
auto r = obj.cast<double>();
} else if (nb::isinstance<nb::float_>(obj)) {
auto r = nb::cast<double>(obj);
constants.push_back(*reinterpret_cast<uint64_t*>(&r));
} else {
std::ostringstream msg;
msg << "[compile] Function arguments must be trees of arrays "
<< "or constants (floats, ints, or strings), but received "
<< "type " << obj.get_type() << ".";
<< "type " << type_name_str(obj) << ".";
throw std::invalid_argument(msg.str());
}
};
@@ -404,13 +412,12 @@ struct PyCompiledFun {
recurse(args);
int num_args = inputs.size();
recurse(kwargs);
auto compile_fun = [this, &args, &kwargs, num_args](
const std::vector<array>& a) {
// Put tracers into captured inputs
std::vector<array> flat_in_captures;
std::vector<array> trace_captures;
if (!py::isinstance<py::none>(captured_inputs)) {
if (!captured_inputs.is_none()) {
flat_in_captures = tree_flatten(captured_inputs, false);
trace_captures.insert(
trace_captures.end(), a.end() - flat_in_captures.size(), a.end());
@@ -425,7 +432,7 @@ struct PyCompiledFun {
tree_cache().insert({fun_id, py_outputs});
num_outputs = outputs.size();
if (!py::isinstance<py::none>(captured_outputs)) {
if (!captured_outputs.is_none()) {
auto flat_out_captures = tree_flatten(captured_outputs, false);
outputs.insert(
outputs.end(),
@@ -434,13 +441,13 @@ struct PyCompiledFun {
}
// Replace tracers with originals in captured inputs
if (!py::isinstance<py::none>(captured_inputs)) {
if (!captured_inputs.is_none()) {
tree_replace(captured_inputs, trace_captures, flat_in_captures);
}
return outputs;
};
if (!py::isinstance<py::none>(captured_inputs)) {
if (!captured_inputs.is_none()) {
auto flat_in_captures = tree_flatten(captured_inputs, false);
inputs.insert(
inputs.end(),
@@ -451,7 +458,7 @@ struct PyCompiledFun {
// Compile and call
auto outputs =
detail::compile(compile_fun, fun_id, shapeless, constants)(inputs);
if (!py::isinstance<py::none>(captured_outputs)) {
if (!captured_outputs.is_none()) {
std::vector<array> captures(
std::make_move_iterator(outputs.begin() + num_outputs),
std::make_move_iterator(outputs.end()));
@@ -459,12 +466,16 @@ struct PyCompiledFun {
}
// Put the outputs back in the container
py::object py_outputs = tree_cache().at(fun_id);
nb::object py_outputs = tree_cache().at(fun_id);
return tree_unflatten_from_structure(py_outputs, outputs);
}
nb::object operator()(const nb::args& args, const nb::kwargs& kwargs) const {
return const_cast<PyCompiledFun*>(this)->call_impl(args, kwargs);
};
~PyCompiledFun() {
py::gil_scoped_acquire gil;
nb::gil_scoped_acquire gil;
tree_cache().erase(fun_id);
detail::compile_erase(fun_id);
@@ -476,35 +487,35 @@ struct PyCompiledFun {
class PyCheckpointedFun {
public:
PyCheckpointedFun(py::function fun) : fun_(std::move(fun)) {}
PyCheckpointedFun(nb::callable fun) : fun_(std::move(fun)) {}
~PyCheckpointedFun() {
py::gil_scoped_acquire gil;
nb::gil_scoped_acquire gil;
fun_.release().dec_ref();
}
struct InnerFunction {
py::object fun_;
py::object args_structure_;
std::weak_ptr<py::object> output_structure_;
nb::object fun_;
nb::object args_structure_;
std::weak_ptr<nb::object> output_structure_;
InnerFunction(
py::object fun,
py::object args_structure,
std::weak_ptr<py::object> output_structure)
nb::object fun,
nb::object args_structure,
std::weak_ptr<nb::object> output_structure)
: fun_(std::move(fun)),
args_structure_(std::move(args_structure)),
output_structure_(output_structure) {}
~InnerFunction() {
py::gil_scoped_acquire gil;
nb::gil_scoped_acquire gil;
fun_.release().dec_ref();
args_structure_.release().dec_ref();
}
std::vector<array> operator()(const std::vector<array>& inputs) {
auto args = py::cast<py::tuple>(
auto args = nb::cast<nb::tuple>(
tree_unflatten_from_structure(args_structure_, inputs));
auto [outputs, output_structure] =
tree_flatten_with_structure(fun_(*args[0], **args[1]), false);
@@ -515,9 +526,9 @@ class PyCheckpointedFun {
}
};
py::object operator()(const py::args& args, const py::kwargs& kwargs) {
auto output_structure = std::make_shared<py::object>();
auto full_args = py::make_tuple(args, kwargs);
nb::object call_impl(const nb::args& args, const nb::kwargs& kwargs) {
auto output_structure = std::make_shared<nb::object>();
auto full_args = nb::make_tuple(args, kwargs);
auto [inputs, args_structure] =
tree_flatten_with_structure(full_args, false);
@@ -527,26 +538,27 @@ class PyCheckpointedFun {
return tree_unflatten_from_structure(*output_structure, outputs);
}
nb::object operator()(const nb::args& args, const nb::kwargs& kwargs) const {
return const_cast<PyCheckpointedFun*>(this)->call_impl(args, kwargs);
}
private:
py::function fun_;
nb::callable fun_;
};
void init_transforms(py::module_& m) {
py::options options;
options.disable_function_signatures();
void init_transforms(nb::module_& m) {
m.def(
"eval",
[](const py::args& args) {
[](const nb::args& args) {
std::vector<array> arrays = tree_flatten(args, false);
{
py::gil_scoped_release nogil;
nb::gil_scoped_release nogil;
eval(arrays);
}
},
nb::arg(),
nb::sig("def eval(*args) -> None"),
R"pbdoc(
eval(*args) -> None
Evaluate an :class:`array` or tree of :class:`array`.
Args:
@@ -557,19 +569,15 @@ void init_transforms(py::module_& m) {
)pbdoc");
m.def(
"jvp",
[](const py::function& fun,
[](const nb::callable& fun,
const std::vector<array>& primals,
const std::vector<array>& tangents) {
auto vfun = [&fun](const std::vector<array>& primals) {
py::args args = py::tuple(primals.size());
for (int i = 0; i < primals.size(); ++i) {
args[i] = primals[i];
}
auto out = fun(*args);
if (py::isinstance<array>(out)) {
return std::vector<array>{py::cast<array>(out)};
auto out = fun(*nb::cast(primals));
if (nb::isinstance<array>(out)) {
return std::vector<array>{nb::cast<array>(out)};
} else {
return py::cast<std::vector<array>>(out);
return nb::cast<std::vector<array>>(out);
}
};
return jvp(vfun, primals, tangents);
@@ -577,17 +585,16 @@ void init_transforms(py::module_& m) {
"fun"_a,
"primals"_a,
"tangents"_a,
nb::sig(
"def jvp(fun: callable, primals: List[array], tangents: List[array]) -> Tuple[List[array], List[array]]"),
R"pbdoc(
jvp(fun: function, primals: List[array], tangents: List[array]) -> Tuple[List[array], List[array]]
Compute the Jacobian-vector product.
This computes the product of the Jacobian of a function ``fun`` evaluated
at ``primals`` with the ``tangents``.
Args:
fun (function): A function which takes a variable number of :class:`array`
fun (callable): A function which takes a variable number of :class:`array`
and returns a single :class:`array` or list of :class:`array`.
primals (list(array)): A list of :class:`array` at which to
evaluate the Jacobian.
@@ -601,19 +608,15 @@ void init_transforms(py::module_& m) {
)pbdoc");
m.def(
"vjp",
[](const py::function& fun,
[](const nb::callable& fun,
const std::vector<array>& primals,
const std::vector<array>& cotangents) {
auto vfun = [&fun](const std::vector<array>& primals) {
py::args args = py::tuple(primals.size());
for (int i = 0; i < primals.size(); ++i) {
args[i] = primals[i];
}
auto out = fun(*args);
if (py::isinstance<array>(out)) {
return std::vector<array>{py::cast<array>(out)};
auto out = fun(*nb::cast(primals));
if (nb::isinstance<array>(out)) {
return std::vector<array>{nb::cast<array>(out)};
} else {
return py::cast<std::vector<array>>(out);
return nb::cast<std::vector<array>>(out);
}
};
return vjp(vfun, primals, cotangents);
@@ -621,16 +624,16 @@ void init_transforms(py::module_& m) {
"fun"_a,
"primals"_a,
"cotangents"_a,
nb::sig(
"def vjp(fun: callable, primals: List[array], cotangents: List[array]) -> Tuple[List[array], List[array]]"),
R"pbdoc(
vjp(fun: function, primals: List[array], cotangents: List[array]) -> Tuple[List[array], List[array]]
Compute the vector-Jacobian product.
Computes the product of the ``cotangents`` with the Jacobian of a
function ``fun`` evaluated at ``primals``.
Args:
fun (function): A function which takes a variable number of :class:`array`
fun (callable): A function which takes a variable number of :class:`array`
and returns a single :class:`array` or list of :class:`array`.
primals (list(array)): A list of :class:`array` at which to
evaluate the Jacobian.
@@ -644,20 +647,20 @@ void init_transforms(py::module_& m) {
)pbdoc");
m.def(
"value_and_grad",
[](const py::function& fun,
[](const nb::callable& fun,
const std::optional<IntOrVec>& argnums,
const StrOrVec& argnames) {
auto [argnums_vec, argnames_vec] =
validate_argnums_argnames(argnums, argnames);
return py::cpp_function(py_value_and_grad(
return nb::cpp_function(py_value_and_grad(
fun, argnums_vec, argnames_vec, "[value_and_grad]", false));
},
"fun"_a,
"argnums"_a = std::nullopt,
"argnums"_a = nb::none(),
"argnames"_a = std::vector<std::string>{},
nb::sig(
"def value_and_grad(fun: callable, argnums: Optional[Union[int, List[int]]] = None, argnames: Union[str, List[str]] = []) -> callable"),
R"pbdoc(
value_and_grad(fun: function, argnums: Optional[Union[int, List[int]]] = None, argnames: Union[str, List[str]] = []) -> function
Returns a function which computes the value and gradient of ``fun``.
The function passed to :func:`value_and_grad` should return either
@@ -688,7 +691,7 @@ void init_transforms(py::module_& m) {
(loss, mse, l1), grads = mx.value_and_grad(lasso)(params, inputs, targets)
Args:
fun (function): A function which takes a variable number of
fun (callable): A function which takes a variable number of
:class:`array` or trees of :class:`array` and returns
a scalar output :class:`array` or a tuple the first element
of which should be a scalar :class:`array`.
@@ -702,34 +705,34 @@ void init_transforms(py::module_& m) {
no gradients for keyword arguments by default.
Returns:
function: A function which returns a tuple where the first element
callable: A function which returns a tuple where the first element
is the output of `fun` and the second element is the gradients w.r.t.
the loss.
)pbdoc");
m.def(
"grad",
[](const py::function& fun,
[](const nb::callable& fun,
const std::optional<IntOrVec>& argnums,
const StrOrVec& argnames) {
auto [argnums_vec, argnames_vec] =
validate_argnums_argnames(argnums, argnames);
auto fn =
py_value_and_grad(fun, argnums_vec, argnames_vec, "[grad]", true);
return py::cpp_function(
[fn](const py::args& args, const py::kwargs& kwargs) {
return nb::cpp_function(
[fn](const nb::args& args, const nb::kwargs& kwargs) {
return fn(args, kwargs).second;
});
},
"fun"_a,
"argnums"_a = std::nullopt,
"argnums"_a = nb::none(),
"argnames"_a = std::vector<std::string>{},
nb::sig(
"def grad(fun: callable, argnums: Optional[Union[int, List[int]]] = None, argnames: Union[str, List[str]] = []) -> callable"),
R"pbdoc(
grad(fun: function, argnums: Optional[Union[int, List[int]]] = None, argnames: Union[str, List[str]] = []) -> function
Returns a function which computes the gradient of ``fun``.
Args:
fun (function): A function which takes a variable number of
fun (callable): A function which takes a variable number of
:class:`array` or trees of :class:`array` and returns
a scalar output :class:`array`.
argnums (int or list(int), optional): Specify the index (or indices)
@@ -742,26 +745,26 @@ void init_transforms(py::module_& m) {
no gradients for keyword arguments by default.
Returns:
function: A function which has the same input arguments as ``fun`` and
callable: A function which has the same input arguments as ``fun`` and
returns the gradient(s).
)pbdoc");
m.def(
"vmap",
[](const py::function& fun,
const py::object& in_axes,
const py::object& out_axes) {
return py::cpp_function(py_vmap(fun, in_axes, out_axes));
[](const nb::callable& fun,
const nb::object& in_axes,
const nb::object& out_axes) {
return nb::cpp_function(py_vmap(fun, in_axes, out_axes));
},
"fun"_a,
"in_axes"_a = 0,
"out_axes"_a = 0,
nb::sig(
"def vmap(fun: callable, in_axes: object = 0, out_axes: object = 0) -> callable"),
R"pbdoc(
vmap(fun: function, in_axes: object = 0, out_axes: object = 0) -> function
Returns a vectorized version of ``fun``.
Args:
fun (function): A function which takes a variable number of
fun (callable): A function which takes a variable number of
:class:`array` or a tree of :class:`array` and returns
a variable number of :class:`array` or a tree of :class:`array`.
in_axes (int, optional): An integer or a valid prefix tree of the
@@ -774,16 +777,16 @@ void init_transforms(py::module_& m) {
Defaults to ``0``.
Returns:
function: The vectorized function.
callable: The vectorized function.
)pbdoc");
m.def(
"export_to_dot",
[](py::object file, const py::args& args) {
[](nb::object file, const nb::args& args) {
std::vector<array> arrays = tree_flatten(args);
if (py::isinstance<py::str>(file)) {
std::ofstream out(py::cast<std::string>(file));
if (nb::isinstance<nb::str>(file)) {
std::ofstream out(nb::cast<std::string>(file));
export_to_dot(out, arrays);
} else if (py::hasattr(file, "write")) {
} else if (nb::hasattr(file, "write")) {
std::ostringstream out;
export_to_dot(out, arrays);
auto write = file.attr("write");
@@ -793,57 +796,50 @@ void init_transforms(py::module_& m) {
"export_to_dot accepts file-like objects or strings to be used as filenames");
}
},
"file"_a);
"file"_a,
"args"_a);
m.def(
"compile",
[](const py::function& fun,
const py::object& inputs,
const py::object& outputs,
[](const nb::callable& fun,
const nb::object& inputs,
const nb::object& outputs,
bool shapeless) {
py::options options;
options.disable_function_signatures();
std::ostringstream doc;
auto name = fun.attr("__name__").cast<std::string>();
doc << name;
// Try to get the name
auto n = fun.attr("__name__");
auto name = n.is_none() ? "compiled" : nb::cast<std::string>(n);
// Try to get the signature
auto inspect = py::module::import("inspect");
if (!inspect.attr("isbuiltin")(fun).cast<bool>()) {
doc << inspect.attr("signature")(fun)
.attr("__str__")()
.cast<std::string>();
std::ostringstream sig;
sig << "def " << name;
auto inspect = nb::module_::import_("inspect");
if (nb::cast<bool>(inspect.attr("isroutine")(fun))) {
sig << nb::cast<std::string>(
inspect.attr("signature")(fun).attr("__str__")());
} else {
sig << "(*args, **kwargs)";
}
// Try to get the doc string
if (auto d = fun.attr("__doc__"); py::isinstance<py::str>(d)) {
doc << "\n\n";
auto dstr = d.cast<std::string>();
// Add spaces to match first line indentation with remainder of
// docstring
int i = 0;
for (int i = dstr.size() - 1; i >= 0 && dstr[i] == ' '; i--) {
doc << ' ';
}
doc << dstr;
}
auto doc_str = doc.str();
return py::cpp_function(
auto d = inspect.attr("getdoc")(fun);
std::string doc =
d.is_none() ? "MLX compiled function." : nb::cast<std::string>(d);
auto sig_str = sig.str();
return nb::cpp_function(
PyCompiledFun{fun, inputs, outputs, shapeless},
py::name(name.c_str()),
py::doc(doc_str.c_str()));
nb::name(name.c_str()),
nb::sig(sig_str.c_str()),
doc.c_str());
},
"fun"_a,
"inputs"_a = std::nullopt,
"outputs"_a = std::nullopt,
"inputs"_a = nb::none(),
"outputs"_a = nb::none(),
"shapeless"_a = false,
R"pbdoc(
compile(fun: function) -> function
Returns a compiled function which produces the same output as ``fun``.
Args:
fun (function): A function which takes a variable number of
fun (callable): A function which takes a variable number of
:class:`array` or trees of :class:`array` and returns
a variable number of :class:`array` or trees of :class:`array`.
inputs (list or dict, optional): These inputs will be captured during
@@ -864,15 +860,13 @@ void init_transforms(py::module_& m) {
``shapeless`` set to ``True``. Default: ``False``
Returns:
function: A compiled function which has the same input arguments
callable: A compiled function which has the same input arguments
as ``fun`` and returns the the same output(s).
)pbdoc");
m.def(
"disable_compile",
&disable_compile,
R"pbdoc(
disable_compile() -> None
Globally disable compilation. Setting the environment variable
``MLX_DISABLE_COMPILE`` can also be used to disable compilation.
)pbdoc");
@@ -880,17 +874,15 @@ void init_transforms(py::module_& m) {
"enable_compile",
&enable_compile,
R"pbdoc(
enable_compile() -> None
Globally enable compilation. This will override the environment
variable ``MLX_DISABLE_COMPILE`` if set.
)pbdoc");
m.def(
"checkpoint",
[](py::function fun) { return py::cpp_function(PyCheckpointedFun{fun}); },
[](nb::callable fun) { return nb::cpp_function(PyCheckpointedFun{fun}); },
"fun"_a);
// Register static Python object cleanup before the interpreter exits
auto atexit = py::module_::import("atexit");
atexit.attr("register")(py::cpp_function([]() { tree_cache().clear(); }));
auto atexit = nb::module_::import_("atexit");
atexit.attr("register")(nb::cpp_function([]() { tree_cache().clear(); }));
}