[CUDA] Always use batched matmul (#2404)

* cuda batched mm

* addmm as well

* comment
This commit is contained in:
Awni Hannun 2025-07-24 20:46:02 -07:00 committed by GitHub
parent 7d9d6ef456
commit 9acec364c2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 694 additions and 322 deletions

View File

@ -21,7 +21,8 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
@ -47,6 +48,14 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cu
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_9.cu)
else()
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_0.cpp)
endif()
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
# Embed kernel sources in binary for JIT compilation.

View File

@ -0,0 +1,73 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
namespace mlx::core::cu {
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc,
nullptr);
a_it.step();
b_it.step();
}
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc,
c.data<int8_t>() + c.itemsize() * c_it.loc,
alpha,
beta);
a_it.step();
b_it.step();
c_it.step();
}
}
} // namespace mlx::core::cu

View File

@ -0,0 +1,206 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include <cooperative_groups.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
__global__ void set_mm_device_pointers(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] =
out_start + item_size * index * batch_stride;
}
__global__ void set_addmm_device_pointers(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* c_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
const __grid_constant__ Strides c_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset, c_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
c_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
pointers[index + 3 * batch_count] =
out_start + item_size * index * batch_stride;
}
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
&batch_mode,
sizeof(batch_mode)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
auto batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 3),
{static_cast<int>(batch_count * 3)},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_mm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto out_pointers = b_pointers + batch_count;
run_impl(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
nullptr);
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta) {
auto batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(c_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
{static_cast<int>(batch_count * 4)},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_addmm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
const_param(c_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto c_pointers = b_pointers + batch_count;
auto out_pointers = c_pointers + batch_count;
run_impl(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
reinterpret_cast<void*>(c_pointers),
alpha,
beta);
}
} // namespace mlx::core::cu

View File

@ -0,0 +1,282 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/dtype_utils.h"
#include "mlx/utils.h"
#include <fmt/format.h>
namespace mlx::core::cu {
struct CublasPreference {
CublasPreference(Device& device) {
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
uint64_t MiB = 1024 * 1024;
uint64_t workspace_size =
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
pref_,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&workspace_size,
sizeof(uint64_t)));
}
~CublasPreference() {
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
}
cublasLtMatmulPreference_t pref_{nullptr};
};
cublasLtMatmulPreference_t cublas_preference(Device& device) {
static CublasPreference pref(device);
return pref.pref_;
}
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUBLAS_COMPUTE_32F;
case bfloat16:
return CUBLAS_COMPUTE_32F;
case float32:
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
: CUBLAS_COMPUTE_32F;
case float64:
case complex64:
return CUBLAS_COMPUTE_64F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
}
}
cudaDataType_t dtype_to_cublas_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUDA_R_16F;
case bfloat16:
return CUDA_R_16BF;
case float32:
return CUDA_R_32F;
case float64:
return CUDA_R_64F;
case complex64:
return CUDA_C_32F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
}
}
cublasLtMatrixLayout_t create_matrix_layout(
cudaDataType_t type,
uint64_t rows,
uint64_t cols,
bool transposed,
int64_t ld,
int32_t batch_count,
int64_t batch_stride) {
cublasLtMatrixLayout_t desc;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
if (batch_count > 1) {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
&batch_count,
sizeof(int32_t)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
&batch_stride,
sizeof(int64_t)));
}
return desc;
}
Matmul::Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride)
: handle_(device.lt_handle()),
pref_(cublas_preference(device)),
M_(a_rows),
N_(b_cols) {
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
auto scale_type = dtype_to_cublas_type(dtype);
if (dtype == bfloat16 || dtype == float16) {
scale_type = CUDA_R_32F;
}
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_POINTER_MODE,
&pointer_mode,
sizeof(int32_t)));
cublasOperation_t op = CUBLAS_OP_N;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSA,
&op,
sizeof(cublasOperation_t)));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSB,
&op,
sizeof(cublasOperation_t)));
auto type = dtype_to_cublas_type(dtype);
a_desc_ = create_matrix_layout(
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
b_desc_ = create_matrix_layout(
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
out_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
}
Matmul::Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int64_t ldc,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride)
: Matmul(
device,
dtype,
a_transposed,
a_rows,
a_cols,
lda,
b_transposed,
b_rows,
b_cols,
ldb,
batch_count,
a_batch_stride,
b_batch_stride) {
auto type = dtype_to_cublas_type(dtype);
c_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
}
Matmul::~Matmul() {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
}
void Matmul::run_impl(
cu::CommandEncoder& encoder,
void* out,
const void* a,
const void* b,
const void* c,
float alpha /* = 1 */,
float beta /* = 0 */) {
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
int ret = 0;
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
handle_,
matmul_desc_,
a_desc_,
b_desc_,
out_desc_, // TODO should that be c_desc is it's set?
out_desc_,
pref_,
1,
&heuristic_,
&ret));
if (ret == 0) {
throw std::runtime_error("Can not find algorithm for matmul.");
}
}
void* workspace_ptr = nullptr;
if (heuristic_.workspaceSize > 0) {
array workspace(
allocator::malloc(heuristic_.workspaceSize),
{static_cast<int>(heuristic_.workspaceSize)},
int8);
encoder.add_temporary(workspace);
workspace_ptr = workspace.data<void>();
}
auto capture = encoder.capture_context();
CHECK_CUBLAS_ERROR(cublasLtMatmul(
handle_,
matmul_desc_,
&alpha,
a,
a_desc_,
b,
b_desc_,
&beta,
c ? c : out,
c ? c_desc_ : out_desc_,
out,
out_desc_,
&heuristic_.algo,
workspace_ptr,
heuristic_.workspaceSize,
encoder.stream()));
}
void Matmul::run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c /* = std::nullopt */,
float alpha /* = 1 */,
float beta /* = 0 */) {
encoder.set_input_array(a);
encoder.set_input_array(b);
if (c) {
encoder.set_input_array(*c);
}
encoder.set_output_array(out);
run_impl(
encoder,
out.data<void>(),
a.data<void>(),
b.data<void>(),
c ? c->data<void>() : nullptr,
alpha,
beta);
}
} // namespace mlx::core::cu

View File

@ -0,0 +1,100 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/device.h"
#include <cublasLt.h>
#include <optional>
namespace mlx::core::cu {
class Matmul {
public:
Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride);
Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int64_t ldc,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride);
~Matmul();
void run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c = std::nullopt,
float alpha = 1,
float beta = 0);
void run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides);
void run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta);
private:
void run_impl(
cu::CommandEncoder& encoder,
void* out,
const void* a,
const void* b,
const void* c,
float alpha = 1,
float beta = 0);
uint64_t M_;
uint64_t N_;
cublasLtMatmulPreference_t pref_{nullptr};
cublasLtHandle_t handle_{nullptr};
cublasLtMatmulDesc_t matmul_desc_{nullptr};
cublasLtMatrixLayout_t a_desc_{nullptr};
cublasLtMatrixLayout_t b_desc_{nullptr};
cublasLtMatrixLayout_t c_desc_{nullptr};
cublasLtMatrixLayout_t out_desc_{nullptr};
cublasLtMatmulHeuristicResult_t heuristic_;
};
} // namespace mlx::core::cu

View File

@ -1,6 +1,6 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/gemv.h"
#include "mlx/backend/cuda/gemms/gemv.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"

View File

@ -2,279 +2,15 @@
#include "mlx/backend/common/matmul.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemv.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/gemms/gemv.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <numeric>
namespace mlx::core {
namespace cu {
struct CublasPreference {
CublasPreference(Device& device) {
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
uint64_t MiB = 1024 * 1024;
uint64_t workspace_size =
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
pref_,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&workspace_size,
sizeof(uint64_t)));
}
~CublasPreference() {
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
}
cublasLtMatmulPreference_t pref_{nullptr};
};
cublasLtMatmulPreference_t cublas_preference(Device& device) {
static CublasPreference pref(device);
return pref.pref_;
}
class MatMul {
public:
MatMul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride)
: handle_(device.lt_handle()), pref_(cublas_preference(device)) {
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
auto scale_type = dtype_to_cuda_type(dtype);
if (dtype == bfloat16 || dtype == float16) {
scale_type = CUDA_R_32F;
}
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_POINTER_MODE,
&pointer_mode,
sizeof(int32_t)));
cublasOperation_t op = CUBLAS_OP_N;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSA,
&op,
sizeof(cublasOperation_t)));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSB,
&op,
sizeof(cublasOperation_t)));
auto type = dtype_to_cuda_type(dtype);
a_desc_ = create_matrix_layout(
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
b_desc_ = create_matrix_layout(
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
out_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
}
MatMul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int64_t ldc,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride)
: MatMul(
device,
dtype,
a_transposed,
a_rows,
a_cols,
lda,
b_transposed,
b_rows,
b_cols,
ldb,
batch_count,
a_batch_stride,
b_batch_stride) {
auto type = dtype_to_cuda_type(dtype);
c_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
}
~MatMul() {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
}
void run(
cu::CommandEncoder& encoder,
void* out,
void* a,
void* b,
void* c = nullptr,
float alpha = 1,
float beta = 0) {
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
int ret = 0;
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
handle_,
matmul_desc_,
a_desc_,
b_desc_,
out_desc_,
out_desc_,
pref_,
1,
&heuristic_,
&ret));
if (ret == 0) {
throw std::runtime_error("Can not find algorithm for matmul.");
}
}
void* workspace_ptr = nullptr;
if (heuristic_.workspaceSize > 0) {
array workspace(
allocator::malloc(heuristic_.workspaceSize),
{static_cast<int>(heuristic_.workspaceSize)},
int8);
encoder.add_temporary(workspace);
workspace_ptr = workspace.data<void>();
}
auto capture = encoder.capture_context();
CHECK_CUBLAS_ERROR(cublasLtMatmul(
handle_,
matmul_desc_,
&alpha,
a,
a_desc_,
b,
b_desc_,
&beta,
c ? c : out,
c ? c_desc_ : out_desc_,
out,
out_desc_,
&heuristic_.algo,
workspace_ptr,
heuristic_.workspaceSize,
encoder.stream()));
}
private:
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUBLAS_COMPUTE_32F;
case bfloat16:
return CUBLAS_COMPUTE_32F;
case float32:
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
: CUBLAS_COMPUTE_32F;
case float64:
case complex64:
return CUBLAS_COMPUTE_64F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
}
}
cudaDataType_t dtype_to_cuda_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUDA_R_16F;
case bfloat16:
return CUDA_R_16BF;
case float32:
return CUDA_R_32F;
case float64:
return CUDA_R_64F;
case complex64:
return CUDA_C_32F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
}
}
cublasLtMatrixLayout_t create_matrix_layout(
cudaDataType_t type,
uint64_t rows,
uint64_t cols,
bool transposed,
int64_t ld,
int32_t batch_count,
int64_t batch_stride) {
cublasLtMatrixLayout_t desc;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
cublasLtOrder_t order =
transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
if (batch_count > 1) {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
&batch_count,
sizeof(int32_t)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
&batch_stride,
sizeof(int64_t)));
}
return desc;
}
cublasLtMatmulPreference_t pref_{nullptr};
cublasLtHandle_t handle_{nullptr};
cublasLtMatmulDesc_t matmul_desc_{nullptr};
cublasLtMatrixLayout_t a_desc_{nullptr};
cublasLtMatrixLayout_t b_desc_{nullptr};
cublasLtMatrixLayout_t c_desc_{nullptr};
cublasLtMatrixLayout_t out_desc_{nullptr};
cublasLtMatmulHeuristicResult_t heuristic_;
};
} // namespace cu
namespace {
std::tuple<bool, int64_t, array>
@ -361,8 +97,7 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
/////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt
cu::MatMul matmul(
cu::Matmul matmul(
cu::device(s.device),
a.dtype(),
a_transposed,
@ -377,27 +112,13 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
a_batch_strides.back(),
b_batch_strides.back());
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
auto nbatch = batch_count / batch_shape.back();
if (nbatch == 1) {
matmul.run(encoder, out.data<int8_t>(), a.data<int8_t>(), b.data<int8_t>());
if ((batch_count / batch_shape.back()) == 1) {
matmul.run(encoder, out, a, b);
return;
}
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
matmul.run(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc);
a_it.step();
b_it.step();
}
matmul.run_batched(
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
}
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
@ -465,7 +186,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
/////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt
cu::MatMul matmul(
cu::Matmul matmul(
cu::device(s.device),
a.dtype(),
a_transposed,
@ -482,41 +203,22 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
b_batch_strides.back(),
c_batch_strides.back());
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
auto nbatch = batch_count / batch_shape.back();
if (nbatch == 1) {
matmul.run(
encoder,
out.data<int8_t>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
alpha_,
beta_);
if ((batch_count / batch_shape.back()) == 1) {
matmul.run(encoder, out, a, b, c, alpha_, beta_);
return;
}
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
matmul.run(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc,
c.data<int8_t>() + c.itemsize() * c_it.loc,
alpha_,
beta_);
a_it.step();
b_it.step();
c_it.step();
}
matmul.run_batched(
encoder,
out,
a,
b,
c,
batch_shape,
a_batch_strides,
b_batch_strides,
c_batch_strides,
alpha_,
beta_);
}
} // namespace mlx::core