mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-14 20:41:13 +08:00
[CUDA] Do vectorized store/load in binary ops (#2330)
This commit is contained in:
parent
19facd4b20
commit
9d10239af7
@ -17,35 +17,106 @@ namespace cu {
|
|||||||
|
|
||||||
namespace cg = cooperative_groups;
|
namespace cg = cooperative_groups;
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT>
|
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||||
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
if (index < size) {
|
int remaining = size - index * N_READS;
|
||||||
out[index] = Op{}(a[0], b[0]);
|
if (remaining <= 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (remaining < N_READS) {
|
||||||
|
for (int i = 0; i < remaining; ++i) {
|
||||||
|
IdxT offset = index * N_READS + i;
|
||||||
|
out[offset] = Op{}(a[0], b[0]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
AlignedVector<Out, N_READS> out_vec;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < N_READS; ++i) {
|
||||||
|
out_vec.val[i] = Op{}(a[0], b[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
store_vector<N_READS>(out, index, out_vec);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT>
|
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||||
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
if (index < size) {
|
int remaining = size - index * N_READS;
|
||||||
out[index] = Op{}(a[0], b[index]);
|
if (remaining <= 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (remaining < N_READS) {
|
||||||
|
for (int i = 0; i < remaining; ++i) {
|
||||||
|
IdxT offset = index * N_READS + i;
|
||||||
|
out[offset] = Op{}(a[0], b[offset]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
auto b_vec = load_vector<N_READS>(b, index);
|
||||||
|
|
||||||
|
AlignedVector<Out, N_READS> out_vec;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < N_READS; ++i) {
|
||||||
|
out_vec.val[i] = Op{}(a[0], b_vec.val[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
store_vector<N_READS>(out, index, out_vec);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT>
|
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||||
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
if (index < size) {
|
int remaining = size - index * N_READS;
|
||||||
out[index] = Op{}(a[index], b[0]);
|
if (remaining <= 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (remaining < N_READS) {
|
||||||
|
for (int i = 0; i < remaining; ++i) {
|
||||||
|
IdxT offset = index * N_READS + i;
|
||||||
|
out[offset] = Op{}(a[offset], b[0]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
auto a_vec = load_vector<N_READS>(a, index);
|
||||||
|
|
||||||
|
AlignedVector<Out, N_READS> out_vec;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < N_READS; ++i) {
|
||||||
|
out_vec.val[i] = Op{}(a_vec.val[i], b[0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
store_vector<N_READS>(out, index, out_vec);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename Op, typename In, typename Out, typename IdxT>
|
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||||
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||||
IdxT index = cg::this_grid().thread_rank();
|
IdxT index = cg::this_grid().thread_rank();
|
||||||
if (index < size) {
|
int remaining = size - index * N_READS;
|
||||||
out[index] = Op{}(a[index], b[index]);
|
if (remaining <= 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (remaining < N_READS) {
|
||||||
|
for (int i = 0; i < remaining; ++i) {
|
||||||
|
IdxT offset = index * N_READS + i;
|
||||||
|
out[offset] = Op{}(a[offset], b[offset]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
auto a_vec = load_vector<N_READS>(a, index);
|
||||||
|
auto b_vec = load_vector<N_READS>(b, index);
|
||||||
|
|
||||||
|
AlignedVector<Out, N_READS> out_vec;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i = 0; i < N_READS; ++i) {
|
||||||
|
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
store_vector<N_READS>(out, index, out_vec);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -198,16 +269,23 @@ void binary_op_gpu_inplace(
|
|||||||
} else {
|
} else {
|
||||||
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>;
|
// TODO: Choose optimized value based on type size.
|
||||||
|
constexpr int N_READS = 4;
|
||||||
|
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
|
||||||
if (bopt == BinaryOpType::ScalarVector) {
|
if (bopt == BinaryOpType::ScalarVector) {
|
||||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT>;
|
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
|
||||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||||
kernel = cu::binary_vs<Op, InType, OutType, IdxT>;
|
kernel = cu::binary_vs<Op, InType, OutType, IdxT, N_READS>;
|
||||||
} else if (bopt == BinaryOpType::VectorVector) {
|
} else if (bopt == BinaryOpType::VectorVector) {
|
||||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT>;
|
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
|
||||||
}
|
}
|
||||||
auto [num_blocks, block_dims] = get_launch_args(
|
auto [num_blocks, block_dims] = get_launch_args(
|
||||||
kernel, out.data_size(), out.shape(), out.strides(), large());
|
kernel,
|
||||||
|
out.data_size(),
|
||||||
|
out.shape(),
|
||||||
|
out.strides(),
|
||||||
|
large(),
|
||||||
|
N_READS);
|
||||||
encoder.add_kernel_node(
|
encoder.add_kernel_node(
|
||||||
kernel,
|
kernel,
|
||||||
num_blocks,
|
num_blocks,
|
||||||
|
@ -28,6 +28,27 @@ namespace mlx::core::cu {
|
|||||||
using Shape = cuda::std::array<int32_t, MAX_NDIM>;
|
using Shape = cuda::std::array<int32_t, MAX_NDIM>;
|
||||||
using Strides = cuda::std::array<int64_t, MAX_NDIM>;
|
using Strides = cuda::std::array<int64_t, MAX_NDIM>;
|
||||||
|
|
||||||
|
// Vectorized load/store.
|
||||||
|
template <typename T, int N>
|
||||||
|
struct alignas(sizeof(T) * N) AlignedVector {
|
||||||
|
T val[N];
|
||||||
|
};
|
||||||
|
|
||||||
|
template <int N, typename T>
|
||||||
|
inline __device__ AlignedVector<T, N> load_vector(
|
||||||
|
const T* ptr,
|
||||||
|
uint32_t offset) {
|
||||||
|
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||||
|
return from[offset];
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int N, typename T>
|
||||||
|
inline __device__ void
|
||||||
|
store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
|
||||||
|
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||||
|
to[offset] = vec;
|
||||||
|
}
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Type limits utils
|
// Type limits utils
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
Loading…
Reference in New Issue
Block a user