refactored and updated batch norm tests ^^

This commit is contained in:
m0saan 2023-12-22 20:50:05 +01:00
parent 8b08f440d9
commit a43b853194
2 changed files with 64 additions and 10 deletions

View File

@ -181,7 +181,7 @@ class GroupNorm(Module):
x = group_norm(x)
return (self.weight * x + self.bias) if "weight" in self else x
class BatchNorm(Module):
r"""Applies Batch Normalization over a 2D or 3D input.
@ -211,7 +211,7 @@ class BatchNorm(Module):
>>> bn = nn.BatchNorm1d(num_features=4, affine=True)
>>> output = bn(x)
"""
def __init__(
self,
num_features: int,
@ -239,7 +239,7 @@ class BatchNorm(Module):
def _extra_repr(self):
return f"{self.num_features}, eps={self.eps}, momentum={self.momentum}, affine={'weight' in self}, track_running_stats={self.track_running_stats}"
def _check_and_expand_dims(self, x: mx.array):
"""
Check if the input is a 2D or 3D tensor and expand the weight, bias, running mean, and running variance accordingly.
@ -247,7 +247,7 @@ class BatchNorm(Module):
Args:
x (mx.array): Input tensor.
"""
num_dims = len(x.shape)
dims_dict = {
2: ((1, self.num_features), (0,)),
@ -259,17 +259,16 @@ class BatchNorm(Module):
raise ValueError(f"expected num_dims to be 2, 3, or 4 (got {num_dims})")
shape, self.reduction_axes = dims_dict[num_dims]
if self.affine:
self.weight = mx.expand_dims(self.weight, self.reduction_axes)
self.bias = mx.expand_dims(self.bias, self.reduction_axes)
if self.track_running_stats:
self.running_mean = mx.expand_dims(self.running_mean, self.reduction_axes)
self.running_var = mx.expand_dims(self.running_var, self.reduction_axes)
self.dims_expanded = True
self.dims_expanded = True
def _calc_stats(self, x: mx.array) -> Tuple[mx.array, mx.array]:
"""
@ -304,7 +303,7 @@ class BatchNorm(Module):
Returns:
mx.array: Output tensor.
"""
if not self.dims_expanded:
self._check_and_expand_dims(x)
@ -313,4 +312,4 @@ class BatchNorm(Module):
else:
means, var = self.running_mean, self.running_var
x = (x - means) * mx.rsqrt(var + self.eps)
return (self.weight * x + self.bias) if "weight" in self else x
return (self.weight * x + self.bias) if "weight" in self else x

View File

@ -3,6 +3,7 @@
import os
import tempfile
import unittest
from unittest.mock import Mock, patch
import mlx.core as mx
import mlx.nn as nn
@ -410,6 +411,60 @@ class TestNN(mlx_tests.MLXTestCase):
self.assertTrue(np.allclose(bn.running_mean, expected_mean, atol=1e-5))
self.assertTrue(np.allclose(bn.running_var, expected_var, atol=1e-5))
def test_batch_norm_stats(self):
batch_size = 4
num_features = 32
num_channels = 32
h = 28
w = 28
num_iterations = 100
momentum = 0.1
batch_norm = nn.BatchNorm(num_features)
batch_norm.train()
running_mean = np.array(batch_norm.running_mean.tolist())
running_var = np.array(batch_norm.running_var.tolist())
data = mx.random.normal((batch_size * num_features,)).reshape(
(batch_size, num_features)
)
for _ in range(num_iterations):
normalized_data = batch_norm(data)
means = np.mean(data.tolist(), axis=0)
variances = np.var(data.tolist(), axis=0)
running_mean = (1 - momentum) * running_mean + momentum * means
running_var = (1 - momentum) * running_var + momentum * variances
assert np.allclose(batch_norm.running_mean, running_mean, atol=1e-5)
assert np.allclose(batch_norm.running_var, running_var, atol=1e-5)
data = normalized_data
batch_norm = nn.BatchNorm(num_channels)
batch_norm.train()
running_mean = np.array(batch_norm.running_mean.tolist()).reshape(
1, num_channels, 1, 1
)
running_var = np.array(batch_norm.running_var.tolist()).reshape(
1, num_channels, 1, 1
)
data = mx.random.normal((batch_size, num_channels, h, w))
for _ in range(num_iterations):
normalized_data = batch_norm(data)
means = np.mean(data.tolist(), axis=(0, 2, 3)).reshape(
1, num_channels, 1, 1
)
variances = np.var(data.tolist(), axis=(0, 2, 3)).reshape(
1, num_channels, 1, 1
)
running_mean = (1 - momentum) * running_mean + momentum * means
running_var = (1 - momentum) * running_var + momentum * variances
assert np.allclose(batch_norm.running_mean, running_mean, atol=1e-5)
assert np.allclose(batch_norm.running_var, running_var, atol=1e-5)
data = normalized_data
def test_conv1d(self):
N = 5
L = 12