refactored and updated batch norm tests ^^

This commit is contained in:
m0saan 2023-12-22 20:50:05 +01:00
parent 8b08f440d9
commit a43b853194
2 changed files with 64 additions and 10 deletions

View File

@ -270,7 +270,6 @@ class BatchNorm(Module):
self.dims_expanded = True
def _calc_stats(self, x: mx.array) -> Tuple[mx.array, mx.array]:
"""
Calculate the mean and variance of the input tensor.

View File

@ -3,6 +3,7 @@
import os
import tempfile
import unittest
from unittest.mock import Mock, patch
import mlx.core as mx
import mlx.nn as nn
@ -410,6 +411,60 @@ class TestNN(mlx_tests.MLXTestCase):
self.assertTrue(np.allclose(bn.running_mean, expected_mean, atol=1e-5))
self.assertTrue(np.allclose(bn.running_var, expected_var, atol=1e-5))
def test_batch_norm_stats(self):
batch_size = 4
num_features = 32
num_channels = 32
h = 28
w = 28
num_iterations = 100
momentum = 0.1
batch_norm = nn.BatchNorm(num_features)
batch_norm.train()
running_mean = np.array(batch_norm.running_mean.tolist())
running_var = np.array(batch_norm.running_var.tolist())
data = mx.random.normal((batch_size * num_features,)).reshape(
(batch_size, num_features)
)
for _ in range(num_iterations):
normalized_data = batch_norm(data)
means = np.mean(data.tolist(), axis=0)
variances = np.var(data.tolist(), axis=0)
running_mean = (1 - momentum) * running_mean + momentum * means
running_var = (1 - momentum) * running_var + momentum * variances
assert np.allclose(batch_norm.running_mean, running_mean, atol=1e-5)
assert np.allclose(batch_norm.running_var, running_var, atol=1e-5)
data = normalized_data
batch_norm = nn.BatchNorm(num_channels)
batch_norm.train()
running_mean = np.array(batch_norm.running_mean.tolist()).reshape(
1, num_channels, 1, 1
)
running_var = np.array(batch_norm.running_var.tolist()).reshape(
1, num_channels, 1, 1
)
data = mx.random.normal((batch_size, num_channels, h, w))
for _ in range(num_iterations):
normalized_data = batch_norm(data)
means = np.mean(data.tolist(), axis=(0, 2, 3)).reshape(
1, num_channels, 1, 1
)
variances = np.var(data.tolist(), axis=(0, 2, 3)).reshape(
1, num_channels, 1, 1
)
running_mean = (1 - momentum) * running_mean + momentum * means
running_var = (1 - momentum) * running_var + momentum * variances
assert np.allclose(batch_norm.running_mean, running_mean, atol=1e-5)
assert np.allclose(batch_norm.running_var, running_var, atol=1e-5)
data = normalized_data
def test_conv1d(self):
N = 5
L = 12