mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-01 04:24:36 +08:00
Somewhat working matmul primitives
This commit is contained in:
@@ -92,7 +92,7 @@ target_compile_options(
|
||||
# Compute capability 7 is required for synchronization between CPU/GPU with
|
||||
# managed memory. TODO: Add more architectures for potential performance gain.
|
||||
set(MLX_CUDA_ARCHITECTURES
|
||||
"70;80"
|
||||
"80"
|
||||
CACHE STRING "CUDA architectures")
|
||||
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
|
||||
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
|
||||
|
@@ -7,7 +7,358 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {} // namespace cu
|
||||
namespace cu {
|
||||
|
||||
template <typename T>
|
||||
struct Vector2;
|
||||
template <>
|
||||
struct Vector2<double> {
|
||||
using type = double2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<float> {
|
||||
using type = float2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__half> {
|
||||
using type = __half2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__nv_bfloat16> {
|
||||
using type = __nv_bfloat162;
|
||||
};
|
||||
template <typename T>
|
||||
using Vector2_t = typename Vector2<T>::type;
|
||||
|
||||
template <typename T>
|
||||
struct Tile16x16 {
|
||||
using T2 = Vector2_t<T>;
|
||||
|
||||
T2 values[4];
|
||||
|
||||
__device__ inline void clear() {
|
||||
for (int i = 0; i < 4; i++) {
|
||||
values[i] = static_cast<T2>(0);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ inline void load(uint32_t src_address) {
|
||||
if constexpr (
|
||||
std::is_same_v<T2, __nv_bfloat162> || std::is_same_v<T2, __half2>) {
|
||||
asm volatile(
|
||||
"ldmatrix.sync.aligned.m8n8.x4.shared::cta.b16 {%0, %1, %2, %3}, [%4];\n"
|
||||
: "=r"(*(uint32_t*)&(values[0])),
|
||||
"=r"(*(uint32_t*)&(values[1])),
|
||||
"=r"(*(uint32_t*)&(values[2])),
|
||||
"=r"(*(uint32_t*)&(values[3]))
|
||||
: "r"(src_address));
|
||||
}
|
||||
}
|
||||
|
||||
__device__ inline void store(uint32_t dst_address) {
|
||||
if constexpr (
|
||||
std::is_same_v<T2, __nv_bfloat162> || std::is_same_v<T2, __half2>) {
|
||||
asm volatile(
|
||||
"stmatrix.sync.aligned.m8n8.x4.shared::cta.b16 {%0, %1, %2, %3}, [%4];\n"
|
||||
: "=r"(*(uint32_t*)&(values[0])),
|
||||
"=r"(*(uint32_t*)&(values[1])),
|
||||
"=r"(*(uint32_t*)&(values[2])),
|
||||
"=r"(*(uint32_t*)&(values[3]))
|
||||
: "r"(dst_address));
|
||||
} else {
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int row = laneid / 4;
|
||||
const int col = laneid % 4;
|
||||
|
||||
const uint32_t a = dst_address + ((row + 0) * 8 + col + 0) * sizeof(T2);
|
||||
const uint32_t b = dst_address + ((row + 0) * 8 + col + 4) * sizeof(T2);
|
||||
const uint32_t c = dst_address + ((row + 8) * 8 + col + 0) * sizeof(T2);
|
||||
const uint32_t d = dst_address + ((row + 8) * 8 + col + 4) * sizeof(T2);
|
||||
if constexpr (sizeof(T2) == 4) {
|
||||
asm volatile("st.shared.b32 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[0])), "r"(a));
|
||||
asm volatile("st.shared.b32 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[2])), "r"(b));
|
||||
asm volatile("st.shared.b32 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[1])), "r"(c));
|
||||
asm volatile("st.shared.b32 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[3])), "r"(d));
|
||||
} else if constexpr (sizeof(T2) == 8) {
|
||||
asm volatile("st.shared.b64 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[0])), "r"(a));
|
||||
asm volatile("st.shared.b64 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[2])), "r"(b));
|
||||
asm volatile("st.shared.b64 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[1])), "r"(c));
|
||||
asm volatile("st.shared.b64 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[3])), "r"(d));
|
||||
} else if constexpr (sizeof(T2) == 16) {
|
||||
asm volatile("st.shared.b128 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[0])), "r"(a));
|
||||
asm volatile("st.shared.b128 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[2])), "r"(b));
|
||||
asm volatile("st.shared.b128 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[1])), "r"(c));
|
||||
asm volatile("st.shared.b128 [%1], %0;\n"
|
||||
:
|
||||
: "r"(*(uint32_t*)&(values[3])), "r"(d));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
__device__ inline void store_global(U* x, int N) {
|
||||
using U2 = Vector2_t<U>;
|
||||
U2* x2 = reinterpret_cast<U2*>(x);
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int row = laneid / 4;
|
||||
const int col = laneid % 4;
|
||||
if constexpr (std::is_same_v<U2, T2>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] = values[0];
|
||||
x2[(row + 0) * (N / 2) + col + 4] = values[2];
|
||||
x2[(row + 8) * (N / 2) + col + 0] = values[1];
|
||||
x2[(row + 8) * (N / 2) + col + 4] = values[3];
|
||||
} else if constexpr (
|
||||
std::is_same_v<T2, float2> && std::is_same_v<U, __nv_bfloat16>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[0].x, values[0].y);
|
||||
x2[(row + 0) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[2].x, values[2].y);
|
||||
x2[(row + 8) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[1].x, values[1].y);
|
||||
x2[(row + 8) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[3].x, values[3].y);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, int R, int C>
|
||||
struct __align__(16) SharedTile {
|
||||
static constexpr int TILES_R = R / 16;
|
||||
static constexpr int TILES_C = C / 16;
|
||||
static constexpr int NUM_ELEMENTS = R * C;
|
||||
|
||||
static constexpr int swizzle_bytes =
|
||||
(sizeof(T) == 2 ? (TILES_C % 4 == 0 ? 128 : (TILES_C % 2 == 0 ? 64 : 32))
|
||||
: (sizeof(T) == 4 ? (TILES_C % 2 == 0 ? 128 : 64) : 0));
|
||||
|
||||
T data[R * C];
|
||||
|
||||
__device__ static inline T* idx(T* ptr, int2 coord) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
int r = coord.x, c = coord.y;
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = c / subtile_cols;
|
||||
const uint64_t addr =
|
||||
(uint64_t)(&ptr
|
||||
[outer_idx * R * subtile_cols + r * subtile_cols +
|
||||
c % subtile_cols]);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (T*)(addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + coord.y * C + coord.x;
|
||||
}
|
||||
}
|
||||
|
||||
__device__ static inline uint32_t idx(uint32_t ptr, int2 coord) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
int r = coord.x, c = coord.y;
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = c / subtile_cols;
|
||||
const uint32_t addr = ptr +
|
||||
sizeof(T) *
|
||||
(outer_idx * R * subtile_cols + r * subtile_cols +
|
||||
c % subtile_cols);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + sizeof(T) * (coord.y * C + coord.x);
|
||||
}
|
||||
}
|
||||
|
||||
__device__ inline void store(float4& v, int2 coord) {
|
||||
*(reinterpret_cast<float4*>(idx(data, coord))) = v;
|
||||
}
|
||||
|
||||
template <int NUM_WARPS>
|
||||
__device__ inline void load(const T* x, int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
|
||||
constexpr int NUM_LOADS = NUM_ELEMENTS / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = C / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
uint32_t data_ptr =
|
||||
static_cast<uint32_t>(__cvta_generic_to_shared(&data[0]));
|
||||
x += row * N + col * ELEMENTS_PER_LOAD;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
float4 tmp;
|
||||
tmp = *(reinterpret_cast<const float4*>(&x[i * STEP_ROWS * N]));
|
||||
store(tmp, {row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD});
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename TileAccum, typename Tile>
|
||||
__device__ inline void mma(TileAccum& C, Tile& A, Tile& B) {}
|
||||
|
||||
__device__ inline void mma(
|
||||
Tile16x16<float>& C,
|
||||
Tile16x16<__nv_bfloat16>& A,
|
||||
Tile16x16<__nv_bfloat16>& B) {
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[0].x),
|
||||
"+f"(C.values[0].y),
|
||||
"+f"(C.values[1].x),
|
||||
"+f"(C.values[1].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[0])),
|
||||
"r"(*(uint32_t*)(&B.values[2])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[0].x),
|
||||
"f"(C.values[0].y),
|
||||
"f"(C.values[1].x),
|
||||
"f"(C.values[1].y));
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[2].x),
|
||||
"+f"(C.values[2].y),
|
||||
"+f"(C.values[3].x),
|
||||
"+f"(C.values[3].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[1])),
|
||||
"r"(*(uint32_t*)(&B.values[3])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[2].x),
|
||||
"f"(C.values[2].y),
|
||||
"f"(C.values[3].x),
|
||||
"f"(C.values[3].y));
|
||||
}
|
||||
|
||||
template <typename T, int BM, int BN, int BK, int group_size, int bits>
|
||||
__global__ void qmm(
|
||||
const T* x,
|
||||
const uint8_t* w,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
T* y,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int NUM_WARPS = 4;
|
||||
constexpr int WARP_M = (BM / 16) / (NUM_WARPS / 2);
|
||||
constexpr int WARP_N = (BN / 16) / (NUM_WARPS / 2);
|
||||
constexpr int WARP_K = BK / 16;
|
||||
constexpr int WARP_STEP_M = WARP_M * 16;
|
||||
constexpr int WARP_STEP_N = WARP_N * 16;
|
||||
|
||||
const int warpid = threadIdx.x / 32;
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int offset_m = (warpid / 2) * WARP_STEP_M;
|
||||
const int offset_n = (warpid % 2) * WARP_STEP_N;
|
||||
|
||||
__shared__ SharedTile<T, BM, BK> xs;
|
||||
__shared__ SharedTile<T, BN, BK> ws;
|
||||
|
||||
Tile16x16<float> C[WARP_M * WARP_N];
|
||||
Tile16x16<T> A[WARP_M];
|
||||
Tile16x16<T> B[WARP_N];
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < WARP_M * WARP_N; i++) {
|
||||
C[i].clear();
|
||||
}
|
||||
|
||||
xs.load<NUM_WARPS>(x, K);
|
||||
ws.load<NUM_WARPS>(x + BM * K, K);
|
||||
__syncthreads();
|
||||
|
||||
uint32_t base_addr_xs = __cvta_generic_to_shared(&xs.data[0]);
|
||||
uint32_t base_addr_ws = __cvta_generic_to_shared(&ws.data[0]);
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < WARP_K; k++) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < WARP_M; i++) {
|
||||
A[i].load(xs.idx(
|
||||
base_addr_xs,
|
||||
{offset_m + i * 16 + laneid % 16, k * 16 + laneid / 16 * 8}));
|
||||
}
|
||||
#pragma unroll
|
||||
for (int i = 0; i < WARP_N; i++) {
|
||||
B[i].load(ws.idx(
|
||||
base_addr_ws,
|
||||
{offset_n + i * 16 + laneid % 16, k * 16 + laneid / 16 * 8}));
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < WARP_M; i++) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < WARP_N; j++) {
|
||||
mma(C[i * WARP_N + j], A[i], B[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < WARP_M; i++) {
|
||||
#pragma unroll
|
||||
for (int j = 0; j < WARP_N; j++) {
|
||||
C[i * WARP_N + j].store_global(
|
||||
y + (offset_m + i * 16) * N + offset_n + j * 16, N);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void qmm(
|
||||
const array& x,
|
||||
@@ -24,13 +375,25 @@ void qmm(
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
dispatch_float_types(x.dtype(), "qmm", [&](auto type_tag) {
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
dispatch_bool(transpose_, [&](auto transpose) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
});
|
||||
});
|
||||
});
|
||||
// dispatch_groups(group_size_, [&](auto group_size) {
|
||||
// dispatch_bits(bits_, [&](auto bits) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::qmm<DataType, 64, 64, 32, 64, 4>;
|
||||
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
1,
|
||||
128,
|
||||
x.data<DataType>(),
|
||||
w.data<uint8_t>(),
|
||||
scales.data<DataType>(),
|
||||
biases.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
M,
|
||||
N,
|
||||
K);
|
||||
//});
|
||||
//});
|
||||
});
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user